Our website does not fully support your browser.

We've detected that you are using an older version of Internet Explorer. Your commerce experience may be limited. Please update your browser to Internet Explorer 11 or above.

We believe this site might serve you best:

United States

United States

Language: English

Promega's Cookie Policy

Our website uses functional cookies that do not collect any personal information or track your browsing activity. When you select your country, you agree that we can place these functional cookies on your device.

Forensic DNA Analysis: Massively Parallel Sequencing Workflows

Promega offers solutions for forensic DNA analysis using a massively parallel sequencing (MPS) workflow. We provide preprocessing reagents and automation-friendly DNA isolation systems for processing casework samples in a streamlined workflow. The PowerQuant® System provides accurate, human-specific DNA quantitation. PowerSeq® products allow target amplification of short tandem repeats (STRs) for MPS analysis of both Y-chromosome and autosomal DNA, as well as for preparation of Illumina® sequencing libraries for mitochondrial control region DNA.

Massively Parallel Sequencing for Forensic DNA Analysis

Traditionally, capillary electrophoresis (CE) has been the method of choice for analyzing short tandem repeats (STRs) for human identification. Although CE methods continue to evolve in terms of increasing sensitivity and the ability to work with degraded or poor-quality DNA, the technique still faces some challenges.

Next-generation sequencing (NGS), or massively parallel sequencing (MPS), enables the simultaneous analysis of hundreds of genetic markers, considerably more than current CE technologies. In addition to providing information on the size of the repeated regions, as CE does, MPS determines the underlying DNA sequence of each region. In doing so, MPS offers a solution to the biggest challenges facing CE methods, such as distinguishing true allele variation from PCR artifacts, interpreting mixtures, and obtaining usable profiles from degraded DNA.

A popular application of MPS in forensics is the sequencing of mitochondrial DNA—either the variable control region or the whole mitochondrial genome—with increased mixture deconvolution and heteroplasmy resolution compared to traditional methods. Although adoption of MPS workflows by forensic laboratories has been slow, the technology holds great promise for increasing the accuracy and throughput of forensic DNA analysis. Future advancements in MPS to further lower the cost will encourage more widespread adoption and consequent validation of forensic MPS methods.