We believe this site might serve you best:

United States

United States

Language: English

Promega's Cookie Policy

Our website uses functional cookies that do not collect any personal information or track your browsing activity. When you select your country, you agree that we can place these functional cookies on your device.

Our website does not fully support your browser.

We've detected that you are using an older version of Internet Explorer. Your commerce experience may be limited. Please update your browser to Internet Explorer 11 or above.

Citations Search

Sort By:

Cell 153, 1327-1339. HIF1A Employs CDK8-Mediator to Stimulate RNAPII Elongation in Response to Hypoxia. 2013

Galbraith, M., Allen, M., Bensard, C., Wang, X., Schwinn, M., Qin, B., Long, H., Daniels, D., Hahn, W., Dowell, R., and Espinosa, J.

Notes: These authors identified a previously unknown interaction between the transcription factor HIF1A and the cyclin-dependent kinase CDK8 (a component of the Mediator complex) in the regulation of genes associated with cellular survival under low-oxygen conditions. As part of the study, HaloTag technology was used to identify proteins interacting with CDK8 in a colorectal cancer cell line. Specifically, cells were transfected with CDK8 and CDK19 HaloTag fusion constructs obtained from Kazusa Institute. The cell lysates were then used in pulldown assays to capture interacting proteins. The results showed that CDK8 and CDK19 are present in mutually exclusive Mediator complexes. Details of the transfection are as follows: HCT116 cells were plated in 150 mm dishes and grown to 70%–80% confluence before transfection with 30 μg of plasmid DNA using FuGENE HD Transfection Reagent. (4355)

Expand Full Notes »

EMBO J. 32, 645–55. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. 2013

Deplus, R., Delatte, B., Schwinn, M.K., Defrance, M., Méndez, J., Murphy, N., Dawson, M.A., Volkmar, M., Putmans, P., Calonne, E., Shih, A.H., Levine, R.L., Bernard, O., Mercher, T., Solary, E., Urh, M. Daniels, D. and Fuks, F.

Notes: These authors set out to determine how TET2 and TET3 proteins are involved in epigenetic regulation. To characterize proteins that interact with TET, the authors expressed full-length TET1, TET2 and TET3 as HaloTag® fusion proteins and performed protein pull-downs. They identified novel interactions between all three TET proteins and O-GlcNAc transferase (OGT), which catalyzes the addition of N-acetylglucosamine (GlcNAc) to numerous transcription factors, regulatory proteins and histones to activate or inhibit the target protein or recruit additional proteins. In this paper, they focused on TET2 and TET3, which showed the strongest interaction with OGT. They mapped TET2, TET3 and OGT binding throughout  the genome by expressing these proteins as HaloTag® fusion proteins in HEK293T cells, crosslinking the proteins and DNA, then capturing the fusion proteins and associated DNA fragments and performing high-throughput sequencing to show that TET2/3 and OGT colocalize at active gene promoters and were tightly clustered near transcription start sites.

For expression of HaloTag® fusion proteins and controls, HEK-293 cells were plated at 12 ×106 cells in a 150mm dish and grown to 70–80% confluency before transfection with 30µg of plasmid using the FuGENE® HD Transfection Reagent.

To assess whether TET2/3-OGT activity affects the interaction of SET1/COMPASS with chromatin, the authors used bioluminescence resonance energy transfer (BRET). They created a fusion protein consisting of the H3K4 methyltransferase SETD1A and NanoLuc® luciferase as the energy donor and a fluorescently labeled histone H3.3-HaloTag® fusion protein as the energy acceptor.  These BRET experiments confirmed that TET2/3-OGT activity is necessary for SET1/COMPASS complex function and showed that TET and OGT activities promote binding of SETD1A, a component of the SET1/COMPASS complex, to chromatin. This binding increases H3K4me3 levels. Thus, the authors’ data support a TET2/3-OGT-mediated mechanism for regulating the SET1/COMPASS complex and thus H3K4me3. (4262)

Expand Full Notes »