Citations Search

Sort By:

Current Chemical Genomics 6, 72-78. HaloTag, a Platform Technology for Protein Analysis. 2012

Urh, M., and Rosenberg, M.

Notes: This paper provides an overview of the many applications of HaloTag® Technology. The authors describe the development of the technology, focusing on it's multifunctional utility for protein imaging, protein isolation and display, and in the study of protein complexes and interactions. They also discuss it's potential to facilitate proteomics research studies across complex biological systems at the biochemical, cell-based and whole animal level. (4325)

Expand Full Notes »

Anal. Biochem. 392, 45-53. Protein-protein interaction studies on protein arrays: effect of detection strategies on signal-to-background ratios. 2009

Hurst, R., Hook, B., Slater, M.R., Hatrnett, J., Storts, D.R., and Nath, N.

Notes: These authors compared 6 different detection strategies for protein-protein interactions on protein arrays. They expressed HaloTag® labeled bait proteins in a cell-free expression system, and captured these bait proteins onto coated glass slides using the HaloLink™ Array System. They then compared detection strategies using prey proteins labeled as follows: 1)35S methionine, 2) fluorescence (BODIPY-FL) and 3) biotin labeling of lysine residues using modified Lys tRNA, 4) chemical labeling after expression, 5) HaloTag® fusion, and 6) N-terminal FLAG tag. The authors evaluated signal:background ratios, adaptability to high-throughput screening, and ease of use. (3999)

Expand Full Notes »

ACS Chemical Biology 3, 373–382. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis 2008

Los, G.V., Encell, L.P., McDougall, M.G., Hartzell, D.D., Karassina, N., Zimprich, C., Wood, M.G., Learish, R., Ohana, R.F., Urh, M., Simpson, D., Mendez, J., Zimmerman, K., Otto, P., Vidugris, G., Zhu, J., Darzins, A., Klaubert, D.H., Bulleit, R.F., and Wood, K.V.

Notes: The authors of this study describe a reporter gene system that allows researchers to create one genetic construct that can be used for a variety of studies including imaging and protein immobilization. The HaloTag® reporter protein is engineered to form covalent bonds with ligands that have different functional reporters. (3925)

Expand Full Notes »

BMC Cell Biology 9:17, doi:10.1186/1471-2121/9/17. Spatial separation and bidirectional trafficking of proteins using a multi-functional reporter. 2008

Svendsen, S., Zimprich, C., McDougall, M.G., Klaubert, D.H., and Los, G.V.

Notes: This paper demonstrates use of HaloTag® technology to study expression, trafficking and translocation of an integrin-HaloTag® fusion protein. The authors fused the Halotag reporter protein to truncated integrin. They then labeled live cells with different cell-permeant and impermeant ligands and followed spatial separation of plasma membrane and internal pools of the integrin-HaloTag® protein. (3912)

Expand Full Notes »

Cell 126, 335-348. Single-molecule analysis of dynein processivity and stepping behavior. 2006

Reck-Peterson, S.L., Yidiz, A., Carter, A.P., Gennerich, A., Zhang, N. and Vale, R.D.

Notes: HaloTag™ Interchangeable Labeling Technology was used to specifically label engineered dynein produced in Saccharomyces cerevisiae. The HaloTag™ Protein was added in-frame with either the 5´ or 3´ end of the coding sequence of various engineered dynein molecules. The authors report being able to label the dynein in specific locations using fluorescent dyes or quantum dots. HaloTag™ TMR Ligand was used to covalently label dynein to directly visualize dynein motor movement using total internal reflection fluorescence microscopy. HaloTag™ Biotin Ligand was used to label dynein with streptavidin quantum dots. (3504)

Expand Full Notes »