Citations Search

Sort By:

ACS Chemical Biology 13(9), 2758–70. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. 2018

Riching, K.M., Mahan, S., Corona, C.R., McDougall, M., Vasta, J.D., Robers, M.B., Urh, M. and Daniels, D.L.

Notes: The authors use Promega HiBiT and NanoBRET™ technologies to monitor PROTAC-mediated degradation. (5081)

Expand Full Notes »

Virus Res. 243, 69–74. Development of a rapid and quantitative method for the analysis of viral entry and release using the NanoLuc® luciferase complementation assay. 2017

Sasaki, M., Anindita, P.D., Phongphaew, W., Carr, M., Kobayashi, S., Orba, Y. and Sawa, H.

Notes: The authors developed quantitative methods for the detection of cellular entry and release of subviral and flavivirus-like particles (SVPs, VLPs) by tagging the particles with HiBiT. The HiBiT tag was used for quantitation of the particles, and cellular entry was studied using a LgBiT-expressing stable Vero cell line. (4930)

Expand Full Notes »

Biochim. Biophys. Acta 1864, 2322–9. Regions of MRAP2 required for the inhibition of orexin and prokineticin receptor signaling. 2017

Rouault, A.A.J., Lee, A.A. and Sebag, J.A.

Notes: Authors demonstrate use of HiBiT extracellular system to study the role of MRAP2 in GPCR trafficking and surface expression. (4929)

Expand Full Notes »

Biochem. Biophys. Rep. 12, 40–5. Application of a novel HiBiT peptide tag for monitoring ATF4 protein expression in Neuro2a cells. 2017

Oh-Hashi, K., Furuta, E., Fujimura, K. and Hirata, Y.

Notes: The authors used CRISPR/Cas9 editing to tag endogenous ATF4 with HiBiT and then studied changes in abundance following various cell treatments. (4928)

Expand Full Notes »