Scientific Background:

AURORA A belongs to a multigenic family of mitotic serine/threonine kinases which are involved in the control of chromosome segregation. AURORA A is involved in centrosome separation, duplication and maturation as well as in bipolar spindle assembly and stability (1). AURORA A is expressed and active at the highest level during G2-M phase of the cell cycle. Overexpression of AURORA A has been found to be correlated with the grade of various human solid tumours. Ectopic AURORA A overexpression in any culture cell line leads to polyploidy and centrosome amplification (2).

ADP-Glo™ Kinase Assay

Description

ADP-Glo™ Kinase Assay is a luminescent kinase assay that measures ADP formed from a kinase reaction; ADP is converted into ATP, which is converted into light by Ultra-Glo™ Luciferase (Fig. 1). The luminescent signal positively correlates with ADP amount (Fig. 2) and kinase activity (Fig. 3A). The assay is well suited for measuring the effects chemical compounds have on the activity of a broad range of purified kinases—making it ideal for both primary screening as well as kinase selectivity profiling (Fig. 3B). The ADP-Glo™ Kinase Assay can be used to monitor the activity of virtually any ADP-generating enzyme (e.g., kinase or ATPase) using up to 1mM ATP.

Figure 1. Principle of the ADP-Glo™ Kinase Assay. The ATP remaining after completion of the kinase reaction is depleted prior to an ADP to ATP conversion step and quantitation of the newly synthesized ATP using luciferase/luciferin reaction.

Figure 2. Linearity of the ADP-Glo™ Kinase Assay. ATP-to-ADP conversion curve was prepared at 25µM ATP+ADP concentration range. This standard curve is used to calculate the amount of ADP formed in the kinase reaction. Z' factors were determined using 200 replicates of each of the % conversions shown.

Protocol

- Dilute enzyme, substrate, ATP and inhibitors in Kinase Buffer.
- Add to the wells of 384 low volume plate:
 - 1 µl of inhibitor or (5% DMSO)
 - 2 µl of enzyme (defined from table 1)
 - 2 µl of substrate/ATP mix
- Incubate at room temperature for 60 minutes.
- Add 5 µl of ADP-Glo™ Reagent
- Incubate at room temperature for 40 minutes.
- Add 10 µl of Kinase Detection Reagent
- Incubate at room temperature for 30 minutes.
- Record luminescence (Integration time 0.5-1 second).

Table 1. Aurora A Enzyme Titration. Data are shown as relative light units (RLU) that directly correlate to the amount of ADP produced. The correlation between the % of ATP converted to ADP and corresponding signal to background ratio is indicated for each kinase amount.

<table>
<thead>
<tr>
<th>Aurora A, ng</th>
<th>100</th>
<th>50</th>
<th>25</th>
<th>12.5</th>
<th>6.3</th>
<th>3.1</th>
<th>1.6</th>
<th>0.8</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLU</td>
<td>97688</td>
<td>84954</td>
<td>58324</td>
<td>39334</td>
<td>22065</td>
<td>12924</td>
<td>6612</td>
<td>4020</td>
<td>2306</td>
</tr>
<tr>
<td>S/B</td>
<td>42.4</td>
<td>36.8</td>
<td>25.3</td>
<td>17.1</td>
<td>9.6</td>
<td>5.6</td>
<td>2.9</td>
<td>1.7</td>
<td>1</td>
</tr>
<tr>
<td>% Conversion</td>
<td>85.3</td>
<td>73.7</td>
<td>49.4</td>
<td>32.1</td>
<td>16.3</td>
<td>8.0</td>
<td>2.2</td>
<td>1.8</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 3. Aurora A Kinase Assay Development. (A) Aurora A enzyme was titrated using 25µM ATP and the luminescence signal generated from each of the amounts of the enzyme is shown. (B) Staurosporine dose response was created using 7ng of Aurora A to determine the potency of the inhibitor (IC₅₀).

Assay Components and Ordering Information:

<table>
<thead>
<tr>
<th>Products</th>
<th>Company</th>
<th>Cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP-Glo™ Kinase Assay</td>
<td>Promega</td>
<td>V9101</td>
</tr>
<tr>
<td>Aurora A Kinase Enzyme System</td>
<td>Promega</td>
<td>V1931</td>
</tr>
<tr>
<td>ADP-Glo™ + Aurora A Kinase Enzyme System</td>
<td>Promega</td>
<td>V9081</td>
</tr>
</tbody>
</table>

Aurora A Kinase Buffer: 40mM Tris, 7.5; 20mM MgCl₂; 0.1mg/ml BSA; 50µM DTT.