MADE IN WISCONSIN

Promega’s high quality products are manufactured in Madison, Wisconsin, and distributed worldwide. We often say we are a “fully-integrated” manufacturing facility. But what does that mean? For enzyme production, it means a lot! We have an extensive culture collection, maintained by cryopreservation and backed up by off-site redundant storage. Our advanced fermentation capabilities range from small volumes to thousands of liters, all carefully monitored and controlled by a state-of-the-art programmable logic controller (PLC). At each step of the biomass production, from removal of a frozen vial from the master seed collection to cell harvesting with the continuous flow centrifuges, quality control is diligently maintained through assaying for pure culture and product. We use sophisticated purification techniques to produce enzyme fractions from crude cell extracts. Whether an enzyme was produced last year or will be produced next year, Promega ensures consistency through process design and clear and concise purification protocols. We use process equipment designed to operate at large scale, such as tangential flow filtration, which rapidly separates contaminants from the process stream. These rapid processing steps maximize enzyme quality while providing better value to our customers by reducing costs. Thorough assays are used both throughout and after the purification process. Enzymes are tested for activity, specific activity, contaminating nucleases, and specific performance characteristics before being dispensed, labeled, packaged, and stored in specially designed freezers. Automation of these processes speeds workflow and increases accuracy. Promega enzymes are shipped rapidly through our worldwide distribution network to meet your urgent need for high-quality enzymes. We don’t stop there – Promega’s Technical Services Scientists are ready to respond to customer questions by telephone, fax, or email. In order to continually improve quality and service to our customers, dedicated Customer Focus Teams review customer feedback, manufacturing processes, training programs, new product concepts and technical support materials. That’s what we mean by “fully-integrated”; an organization committed to providing quality and value to our customers worldwide.

Promega earned ISO 9001 registration in 1998. This registration assures that quality systems have been designed, implemented and audited in all product development, production, shipping, and support areas, and stands as a visible symbol of our commitment to continual process improvement.
The Cloning Enzymes
 Introduction ...1
 Cloning Protocol and Tips ...2

Gene Cloning
 Preparation of Vector and Insert ..5
 Ligation ..6
 Transformation and Selection ..7

Ligases
 Introduction ...8
 T4 DNA Ligase ...10
 T4 RNA Ligase ...12
 Blue/White Color Selection Protocol and Tips ..14

Kinases and Phosphatases
 Introduction ..15
 T4 Polynucleotide Kinase ...16
 Calf Intestinal Alkaline Phosphatase ..19
 5’ End-Labeling Protocol and Tips ...20

RecA Protein and AgarACE® Enzyme
 Introduction ..21
 RecA Protein ...22
 RecA Cleavage and Protection Protocols and Tips24
 AgarACE® Enzyme and Product Specifications25
 DNA Recovery Protocol and Tips ...26
 Compatibility of AgarACE® Enzyme with Downstream Applications29

Technical Appendix
 Composition of Solutions ...33
 Tables 12–15 ..34
 General References and Additional Literature37
 Glossary ..38
Figure 1. Activities of enzymes commonly used in cloning applications. Straight lines indicate DNA molecules, wavy lines indicate RNA molecules and arrowheads indicate the 3'-end of a nucleic acid molecule. **Panel A:** T4 DNA Ligase catalyzes the joining of two DNA strands between the 5'-phosphate and 3'-hydroxyl groups. T4 DNA Ligase can catalyze the joining of RNA to either a DNA or RNA strand in a duplex molecule but will not join single-stranded nucleic acids. **Panels B and C:** T4 RNA Ligase catalyzes the joining of single-stranded nucleic acids, including RNA/DNA hybrids. T4 RNA Ligase catalyzes the joining of the 5'-phosphate of single-stranded RNA (donor) to the 3'-hydroxyl of single-stranded RNA (acceptor; Panel B). Single-stranded DNA may also serve as a donor but is a poor acceptor (Panel C). **Panel D:** Calf Intestinal Alkaline Phosphatase catalyzes the hydrolysis of 5'-phosphate groups from DNA, RNA and ribo- and deoxyribonucleoside triphosphates. **Panels E-H:** T4 Polynucleotide Kinase has several activities including catalysis of the transfer of a γ-phosphate from a nucleotide triphosphate to the 5'-hydroxyl terminus of single- and double-stranded mono- and polynucleotides (DNA and RNA) by the forward reaction (Panels E and F). If excess ADP is present in the reaction the enzyme can catalyze the exchange of phosphates between the γ-phosphate of a NTP and the 5'-phosphate terminus of a DNA molecule by the exchange reaction (Panel G). T4 Polynucleotide Kinase also possesses 3'-phosphatase activity (Panel H). **Panel I:** RecA Protein, isolated from *E. coli*, facilitates the pairing of homologous sequences. In the presence of a nonhydrolyzable ATP analog, RecA Protein binds to ssDNA to form a RecA:ssDNA filament. This RecA-coated oligonucleotide can anneal with homologous duplex DNA to form a stable DNA-protein triplex.
The Cloning Enzymes

Introduction

Enzymes that modify nucleic acids provide the foundation for many molecular biology techniques. These enzymes are used to synthesize, degrade, join or remove portions of nucleic acids in a controlled and generally defined manner. Specific features of the in vivo functions of these enzymes have been exploited in vitro to provide many of the protocols currently used in nucleic acid manipulations.

The enzymes highlighted in this second Enzyme Resource Guide, Cloning Enzymes, are those important in nucleic acid cloning procedures. Figure 1 summarizes the activities of the cloning enzymes: ligases, kinases and phosphatases, and RecA Protein. Table 1 provides a list of the common applications of the six enzymes included in this guide.

Ligases are used to join nucleic acid segments, primarily when cloning a DNA fragment into vector DNA (Figure 1, Panels A-C).

Phosphatases remove the 5’-phosphate from nucleic acid strands. This serves several useful functions, including (1) preventing vector religation, which reduces the number of background colonies and (2) producing substrate to which a kinase can attach a new, often radiolabeled phosphate (Figure 1, Panel D).

Kinases add new phosphate groups to a nucleic acid, usually as a means to label a nucleic acid fragment or synthetic oligonucleotide. Under certain conditions, kinases can exchange an existing phosphate group from a nucleic acid fragment with the γ-phosphate of a nucleotide triphosphate (Figure 1, Panels E-H).

RecA Protein and AgarACE® Enzyme are included in this guide because of their roles in protection in certain cloning procedures or facilitating nucleic acid purification. The E. coli RecA Protein has a remarkable ability to facilitate the pairing of homologous DNA sequences (Figure 1, Panel I). AgarACE® Enzyme is a novel, patented agarose-lysing enzyme produced and extensively tested for the harvest of DNA from agarose gels.

<table>
<thead>
<tr>
<th>Application</th>
<th>T4 DNA Ligase</th>
<th>T4 RNA Ligase</th>
<th>T4 Polynucleotide Kinase</th>
<th>Calf Intestinal Alkaline Phosphatase</th>
<th>RecA Protein</th>
<th>AgarACE® Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloning (DNA) Ligation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blunt-ended</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohesive-ended</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-stranded</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Cloning (5’-RACE) RNA Ligation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Genomic Cloning Enrichment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Phosphorylation 5’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Dephosphorylation 3’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>5’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Purification from Agarose Gel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Labeling DNA and RNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>5’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>3’-addition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Sequencing DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>RNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Sequence-Specific Cleavage of DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Cloning Protocol

This protocol provides essential information on the cloning of DNA fragments into plasmid or phage vectors. The protocol provides basic directions on 1) digestion of vector and insert DNA, 2) conversion of 5'- or 3'-overhangs to blunt ends; 3) vector dephosphorylation and; 4) ligation of vector and insert DNA. The flow diagram and complementary written protocol and tips are designed to walk the user through a typical cloning procedure.

Digestion of Vector and Insert DNA

1. Vector (1µg/µl) 5µl
 - Appropriate restriction enzyme
 - 10X buffer 5µl
 - Acetylated BSA (1µg/µl) 5µl
 - Appropriate restriction enzyme(s)
 - 4-5u/µg DNA 20-25u
 - Deionized water to a final volume of 50µl

 Note: This reaction can be scaled up or down depending on the amount of DNA needed for ligation.

2. Incubate at the appropriate temperature for approximately 2 hours.

3. Run a small sample (5µl) on a 1% agarose gel to check for complete digestion. If the DNA fragment is to be blunt-ended or dephosphorylated, the restriction enzyme should be heat-inactivated or purified if possible after digestion. If desired, the DNA can be concentrated by ethanol precipitation.

Converting a 5'- or 3'-Overhang to a Blunt-End Terminus using T4 DNA Polymerase.

T4 DNA Polymerase is active in most restriction enzyme buffers and can be used immediately after the restriction enzyme digestion without prior purification of the DNA. If desired, a T4 DNA Polymerase buffer consisting of 33mM Tris-acetate (pH 7.9), 66mM potassium acetate, 10mM magnesium acetate, 0.5mM DTT may be used.

1. In a reaction volume of 10–100µl add 100µM each dNTP, 0.1mg/ml acetylated BSA and 5 units of T4 DNA Polymerase per microgram DNA.

2. Incubate at 37°C for 5 minutes.

3. Stop the reaction by heating to 75°C for 10 minutes or by adding EDTA to a final concentration of 25mM.

4. The blunt-ended DNA should be either ethanol-precipitated or gel-purified prior to dephosphorylation and ligation to remove unincorporated nucleotides.

(continued)
Cloning Enzymes

Vector Dephosphorylation Reaction

1. Dilute sufficient Calf Intestinal Alkaline Phosphatase (CIAP) for immediate use in CIAP 10X Reaction Buffer to a final concentration of 0.01u/µl. Each pmol of DNA ends will require 0.01u CIAP (added in two aliquots of 0.005u/pmol ends).

 Example: 1µg of a 1kb DNA fragment equals approximately 1.5pmol DNA or 3pmol ends.

2. Purify the DNA to be dephosphorylated by ethanol precipitation and resuspend the pellet in 40µl of 10mM Tris-HCl (pH 8.0) or water.

 Set up the following reaction:
 - DNA (up to 10pmol of 5'-protruding ends) 40µl
 - CIAP 10X Reaction Buffer, 5µl
 - Diluted CIAP (0.01u/µl, add 0.005u/pmol ends) up to 5µl
 - Deionized water to a final volume of 50µl

 Note: CIAP may be added directly to digested DNA. Add 5µl 10X CIAP reaction buffer, 0.005u CIAP/pmol ends and water to a final volume of 50µl.

3. For 5'-protruding ends, incubate at 37°C for 30 minutes. For 5'-recessed or blunt ends, incubate at 37°C for 15 minutes and then at 56°C for 15 minutes.

4. Add another aliquot of diluted CIAP (equivalent to the amount used in Step 2) and repeat incubation.

5. Add 300µl CIAP stop buffer (10mM Tris-HCl [pH 7.5], 1mM EDTA, 200mM NaCl, 0.5% SDS), Phenol/chloroform extract and ethanol precipitate by adding 0.1 volume 7.5M ammonium acetate (pH 5.5), and 2 volumes of 100% ethanol to the final aqueous phase.

 Alternatively, the Wizard® DNA Clean-Up System (Cat.# A7280) or gel purification may be used to purify the DNA prior to ligation.

Ligation of Vector and Insert DNA

1. Using a 1:1 insert:vector ratio (this example uses a 3.0kb vector and a 0.5kb insert), set up the following ligation reaction. For optimal ligation efficiency the insert:vector ratio may need to be optimized. Ratios 1:1, 1:3 or 3:1 of insert:vector are most common. Typical ligation reactions use 10–200ng of vector DNA.

 - Vector DNA (3.0kb) 100ng
 - Insert DNA (0.5kb) 17ng
 - T4 DNA Ligase 10X Buffer 1µl
 - T4 DNA Ligase (Weiss units) 1µl

 Deionized water to a final volume of 40µl

 Perform ligation reactions according to the following guidelines for incubation temperature and time:

 - 4°C overnight
 - 15°C 4–6 hours
 - 20–22°C 1–3 hours

2. Following ligation use the DNA to transform competent cells from an appropriate bacterial strain. Further information on bacterial transformation is available in Promega’s Applications Guide, Third Edition (p. 45) and in Promega Technical Bulletin #TB095.

Cloning Tips (continued)

- Many strategies have been reported to increase the efficiency of blunt-end ligations. These include increasing the amount of ligase up to 50-fold, increasing the time of ligation, and the addition of PEG or hexamine chloride (1). Generally, if good quality DNA and reagents are used, standard conditions will suffice for blunt-end ligations.

- T4 DNA Ligase can be inactivated by incubation at 70°C for 10 minutes. This should be done if the ligation is to be further manipulated before bacterial transformation.

- ATP is required for ligation. ATP is labile; repeated freeze/thaws will destroy the ATP in the ligase buffer. To maintain the ATP concentration, store the 10X ligase buffer frozen in small aliquots.

- Generally, an insert:vector molar ratio of 1:1 will work for most ligations. However, the optimal insert:vector ratio may range from 1:3 to 3:1 or even higher. If a ligation is unsuccessful, try optimizing the this ratio.

- Confirm the concentration of insert and vector by gel electrophoresis or spectrophotometry before setting up ligations.

- Controls are essential for interpreting the results of a cloning experiment. Controls should be included with every ligation. A ‘vector only’ control will indicate the number of colonies due to vector religation. An ‘insert only’ control will indicate any background resulting from contamination of the insert with either intact plasmid or vector sequences from the source of insert.

- A ligation control can be performed by ligating a DNA size marker. The marker should be phosphorylated and have compatible ends. Compare the ligation reaction to unligated DNA on an agarose gel. A shift of the marker bands toward the top of the gel indicates successful ligation.

- There is considerable latitude in the temperature and time needed for a successful ligation. Blunt-end ligations benefit from lower temperatures (4–16°C) and longer incubation times (4 hours to overnight). Cohesive-end ligations are generally performed at higher temperatures (15–20°C) and with shorter incubation times (3–16 hours).

- Experienced users may find a 30-minute incubation at 20°C sufficient for ligation of cohesive ends.

Reference

Gene Cloning

Gene cloning or recombinant DNA technology is the joining of two or more segments of DNA to generate a single DNA molecule capable of autonomous replication within a given host (1). Ligase enzymes catalyze the joining or ligation of DNA or RNA segments, where phosphodiester bonds are formed between adjacent 3′-OH and 5′-phosphate termini of DNA and RNA. The most widely used of such enzymes is T4 DNA Ligase. This enzyme can join DNA fragments having cohesive or blunt ends. It requires ATP as the energy yielding cofactor and Mg2+ ions for activity.

A good general vector for DNA cloning should contain basic elements, such as: an origin of replication enabling replication in bacteria; a multiple cloning site (MCS) with an array of unique restriction enzyme sites suitable for cloning of a double-stranded DNA insert and; selectable markers such as antibiotic resistance genes (tet and amp) (2).

Additional elements of cloning vectors include a phage-derived f1 origin of replication for the production of single-stranded DNA and a MCS containing a DNA segment from the E. coli lacZ operon that encodes the amino-terminal fragment of β-galactosidase. This lacZ fragment can be induced by isopropylthio-β-D-galactosidase (IPTG), and complements a defective form of β-galactosidase encoded by the E. coli host, allowing blue/white colony or plaque selection of clones (2). In addition, some plasmids contain bacteriophage promoters adjacent to the MCS, so that foreign DNA cloned within this site can be transcribed in vitro (2).

Depending on the size of the DNA to be cloned, DNA fragments are inserted into plasmid (~0.1–10kb), lambda phage (~0–23kb), or cosmid (~35–50kb) vectors. Common cloning vectors such as the pGEM® series®, pBR322, pUC/M13, pSP series®, pET series®, and others can easily replicate DNA inserts of 0–10kb. The multiplication rates of large recombinant plasmids slow as the plasmids get larger, with those that have lost large pieces of their foreign DNA eventually predominating. Larger DNA inserts, up to 15kb, are more easily cloned in lambda vectors, without affecting the normal packaging of the lambda chromosome into functional virus particles (4). Still larger DNA inserts, up to 50kb, can be cloned into cosmid vectors, constructed from the two ends of the lambda chromosome (3). Very large DNA fragments can be cloned into P1, BAC and YAC vectors.

The insert sequences can derive from practically any organism. They may be isolated directly from the genome, from mRNA by reverse transcription, from previously cloned DNA segments (subcloning) or from synthetic DNA sequences (1).

The following discussion focuses on DNA cloning in E. coli hosts, using common plasmid vectors and T4 DNA Ligase. For a discussion on cloning in other bacterial hosts, yeast, plants, Drosophila, and viruses, please refer to reference 4. Figure 2 provides essential information on the cloning of DNA fragments into plasmid or phage vectors, including basic directions on 1) digestion of vector and insert DNA; 2) conversion of 5′- or 3′-overhangs to blunt ends; 3) vector dephosphorylation and; 4) ligation of vector and insert DNA.

Preparation of Vector and Insert

There are four major steps in DNA cloning: 1) preparation of vector and insert; 2) ligation of vector and insert; 3) transformation into a host; 4) screening of selected clones.

In preparing the vector and insert DNA for ligation, it is best to digest purified plasmid with two different restriction enzymes having recognition sites within the MCS of the vector. The digestions should generate compatible ends for the cohesive-end ligation of vector for the desired orientation (forced cloning). Cohesive-end ligation combined with blunt-end ligation at one of the ends is the second easiest type of ligation.

When the foreign DNA does not contain the same restriction sites as the vector MCS, it can be digested with appropriate restriction enzymes and blunt-ended for ligation to the vector. Both Klenow (DNA Polymerase I Large Fragment) and T4 DNA Polymerase can be used to fill 5′-protruding ends with dNTPs because both enzymes have 5′→3′ polymerase activity. T4 DNA Polymerase can be used to polish 3′-protruding ends in the presence of dNTPs due to its robust 3′→5′ exonuclease activity. Protocol information for these two enzymes is described in references 5 and 6.

When blunt-end ligation is not desired, it is sometimes possible to generate partial filling of 5′-overhangs with Klenow in the presence of selected dNTPs (5); this alters the overhangs and can make compatible overhangs or cohesive ends. An alternative strategy is to ligate linkers containing the appropriate restriction enzyme sites to the blunt-ended DNA insert.

For cloning PCR products, restriction enzyme sites can be added at the 5′- and 3′-end during amplification to ensure forced cloning. The restriction enzyme site is designed approximately four nucleotides from the 5′-end of the PCR primers to ensure proper digestion; some restriction enzymes do not digest DNA when the recognition site is too close to the end of the DNA fragment (5). Since nonproofreading (no 3′→5′ exonuclease activity) polymerases add an extra nucleotide, usually an adenine, to the 3′-end of the PCR product, a practical approach for cloning PCR products is to use a vector containing single T-overhangs. The pGEM®-T or pGEM®-T Easy Vector Systems® (Cat # A3600 and A1360, respectively) possess a 3′-terminal thymidine, which can pair with the adenine overhang of the PCR product facilitating ligation.

References

When doing blunt-end ligation or single restriction enzyme site ligation, it is advisable to dephosphorylate the vector with Calf Intestinal Alkaline Phosphatase (CIAP). Removing 5′-phosphate groups from the vector prevents self-ligation, thus reducing background levels observed after transformation into the host cells. Exceptions are linear vectors having unique 5′-ends, or nucleotide cloning where the insert:vector molar ratio is >10:1. CIAP is recommended at 0.01 units per picomole of DNA ends:

\[
\frac{\text{µg DNA}}{\text{(kb size of DNA)}} \times 3.04 = \text{pmol of ends (for linear dsDNA)}
\]

For example, 5µg of linearized DNA (6kb) contains 2.5pmol of ends. For detailed protocol information see references 5 and 6.

In a situation where the vector is dephosphorylated, the insert must be phosphorylated at the 5′-ends to ensure ligation. DNA fragments derived from restriction enzyme digestions will be phosphorylated. PCR DNA inserts and synthetic double-stranded DNA inserts can be phosphorylated with T4 Polynucleotide Kinase and ATP. See references 5 and 6 for protocol information.

Another important step to ensure successful ligation is the purification of vector and insert DNA. To reduce background transformation of uncut vector, it is desirable to gel-purify the linearized vector from uncut vector. The linearized vector DNA can be gel-purified once it has been treated with restriction enzymes, modifying enzymes and dNTPs, which may inhibit ligation. If the vector DNA has been cut to near completion (>98%) it may not be necessary to gel-purify it, although a few background transformants may result. The Wizard® DNA Clean-Up System (Cat.# A7280) or Agar.ACE® Enzyme (Cat.# M1741) are appropriate methods of purification when DNA has not been eluted from agarose gels (6, 7).

The DNA insert of interest may need to be gel-purified to remove donor vector or additional DNA fragments that have been digested from a donor. DNA inserts generated by PCR may need to be gel-purified if contaminant DNA fragments are present. When a single PCR fragment of the expected size is generated, gel purification is not necessary. PCR products can be purified using the Wizard® PCR Preps DNA Purification System (Cat.# A7170, A7181), which allows purification from agarose gels or directly from the PCR reaction (8).

Ligation

The efficiency of ligation between vector and insert is best represented by the yield of transformable products. Conditions such as insert-vector molar ratios, amount of total DNA, insert size, units of ligase, ATP and Mg²⁺ concentrations, and appropriate incubation time and temperature should also be considered to ensure successful ligation reactions.

When cloning a DNA fragment into a plasmid vector, the recommended molar ratio of insert:vector DNA is 3:1−1:3. To convert molar ratios to mass ratios the following formula can be applied:

\[
\text{(ng of vector } \times \text{ size of insert in kb/size of vector in kb) } \times \text{(molar ratio of insert:vector)} = \text{ng of insert. For example, to calculate the amount of 0.5kb DNA insert to use in a ligation reaction containing 100ng of a 5kb vector, in a 3:1 insert:vector molar ratio is 30ng of insert DNA (5,9).}
\]

Generally, the recommended amount of total DNA in a ligation reaction varies from 1−10ng per microliter of reaction in a final volume of 10−20µl (10−200ng total DNA mass) (1,9,10).

More difficult ligations, such as blunt-end and greater than two fragment ligations, may require more DNA (1). However, some blunt-end ligations have optimal total DNA concentrations as low as 2−3ng per microliter of reaction (10).

There is a consensus that T4 DNA Ligase performs best at 0.1u/µl of reaction (1,9–12). The buffer components for optimal T4 DNA Ligase activity should be at a final concentration of 30−50mM Tris-HCl (pH 7.6−7.8), 10mM MgCl₂, 1−10mM DTT and 10µM−1mM ATP (Table 15). The integrity of the ATP is essential (9,12). ATP forms a gradient upon thawing in the 10X T4 DNA Ligase Buffer. The 10X buffer should be vortexed to completely incorporate ATP into solution. Also, the DTT in this buffer tends to precipitate upon freezing; vortexing is important to thoroughly mix the DTT into solution. The 10X T4 DNA Ligase Buffer should be stored frozen at −20°C in aliquots to maintain the stability of the ATP molecule.

In general, optimal ligation occurs at a balance between the optimal temperature for T4 DNA Ligase activity (25°C) and the optimal joining temperature of the termini (a few degrees below the melting temperature or Tₘ) (11,12). There is considerable latitude concerning optimal incubation times and temperatures for blunt- and cohesive-end ligations. Reference 11 outlines some commonly used conditions.

In the presence of up to 5% (w/v) high-quality PEG 8000, cohesive-end ligations can be accomplished in 1−2 hours at room temperature, or overnight at 4°C. Under the latter condition, ligation efficiency is improved by approximately three- to six-fold, as determined by the number of transformants (6, 7). Blunt-end ligation efficiencies can also be improved with 5% (w/v) PEG 8000, HMG (high mobility group) 14 DNA binding protein and T4 RNA Ligase (11). Macromolecules such as PEG 8000 greatly stimulate ligation by increasing macromolecular crowding and aggregation of DNA molecules (2,11).
HMG 14 DNA binding protein associates with active chromatin through electrostatic interactions with the phosphate backbone of DNA, stabilizing the DNA duplex and promoting intramolecular ligation of linear DNA. A 50% increase in transformants was observed in blunt-end ligations using T4 DNA Ligase with 50 moles of HMG 14 per mole DNA. Intramolecular interactions (recircularization) under these conditions were inhibited (11).

Low concentrations of T4 RNA Ligase stimulate T4 DNA Ligase in the ligation of blunt ends as much as 20-fold, approaching the efficiency of cohesive-end ligation. The joining of cohesive ends increases slightly in the presence of T4 RNA Ligase (11).

Another important component in a ligation reaction is the use of nuclease-free water. Nucleases are active in the presence of Mg2+ in the T4 DNA Ligase buffer. Moreover, it is important to isolate plasmid DNA from bacterial strains that are endA-. If this is not possible, the plasmid DNA preparation should be phenol:chloroform extracted, as it may contain nucleases. Alternatively, if a Wizard® DNA Purification System is used for DNA purification, nuclease can be removed with an additional 40% isopropanol/4.2M guanidine-HCl wash (13,14).

In addition to the need for appropriate reaction conditions, it is critical to perform negative control reactions during the ligations. Each control reaction should lack a single DNA component; the excluded DNA component should be replaced with an equal volume of water. In a successful cloning reaction the number of transformed colonies, when all the reaction components are present, should be greater than the number of colonies obtained for any of the control reactions.

An additional reaction without T4 DNA Ligase provides information on the number of colonies that result from background uncut vector.

Transformation and Selection

Several *Escherichia coli* strains can be used for transformation with Promega cloning vectors. However, an appropriate host should be compatible with the method of selection. Genotype information on commonly used strains is presented in chapter 24 of reference 5, in reference 11 and Tables 13 and 14 of this guide. *E. coli* JM109 is a preferred host because it is recA–, which reduces undesirable recombination between the insert and host chromosomal DNA (5). *E. coli* cells can be made competent for transformation by different methods (5,15).

Generally, 10ng of ligated DNA is sufficient to transform 100–200µl of competent cells. The transformation efficiency of uncut, supercoiled plasmid in high efficiency competent cells is about 1 x 10⁷–1 x 10⁸ cfu/µg DNA. For each batch of competent cells it is advisable to perform a transformation control with 0.1ng of uncut plasmid, and to calculate the transformation efficiency according to the following formula:

\[
\text{cfu on control plate} \times \frac{10^9 \text{ng}}{\mu \text{g}} \times \text{final dilution} = \frac{\text{cfu}}{\mu \text{g DNA}}
\]

(cfu = colony forming units; 5)

For example:

One hundred microliters of competent cells is transformed with 1ng of supercoiled plasmid DNA. Ten microliters of the transformation reaction (0.1ng total DNA) is added to 990µl SOC medium (1:100 dilution). A 100µl aliquot is plated and 100 colonies are counted. The transformation efficiency =

\[
\frac{100 \text{cfu}}{0.1 \text{ng of supercoiled plasmid}} \times \frac{10^9 \text{ng}}{\mu \text{g}} \times 10^3 = \frac{1 \times 10^7 \text{ cfu}}{\mu \text{g DNA}}
\]

When the transformation efficiency of uncut supercoiled plasmid is approximately 1 x 10⁷ cfu/µg of DNA, the transformation efficiency of recombinant clones is usually about 1 x 10⁹ cfu/µg of DNA for blunt-end ligation. This means that 1–1,000 colonies could be obtained from 10ng of ligated DNA. However, the results will also depend on what percentage of the DNA is successfully ligated. The transfection efficiency of recombinant clones is about 1 x 10¹⁰ cfu/µg of DNA for cohesive-end ligation. This means that 10–1,000 colonies could be obtained from 1ng of ligated DNA. However, these results also depend on the percentage of DNA that is successfully ligated.

A common method of screening transformed plasmids in *E. coli* is accomplished by plating transformed cells on media containing ampicillin, tetracycline or other antibiotics and IPTG and X-Gal. Antibiotic selection is based on the presence of a selectable antibiotic marker in the cloning vector. Successful ligation can be determined by a change in colony color when a vector designed for blue/white color selection is used. A colony color change results from insertion of a DNA fragment into the *lacZ* region of the plasmid, generally causing a white colony upon induction with IPTG and color detection with X-Gal (5,6).

Candidate colonies containing recombinant plasmids are identified and single clones are then grown in liquid media containing antibiotics. Recombinant plasmids are verified by purifying plasmid DNA and digesting with selected restriction enzymes, by hybridization to a specific nucleic acid probe, by sequencing or by PCR.
Ligases

Introduction

DNA Ligases are primarily responsible for joining the gaps that form in DNA during replication (i.e., the joining of "Okazaki" fragments formed by discontinuous or lagging strand replication; 1), DNA repair, and recombination. The best known RNA ligase is bacteriophage T4 RNA ligase. This enzyme does not appear to have any role in nucleic acid metabolism in bacteriophage T4 infected E. coli, but instead appears to be required for the attachment of the bacteriophage's tail fibers to its base plate during bacteriophage assembly (2). However, its activity as a ligase has been used effectively in various molecular biology applications.

Both DNA and RNA ligases catalyze the formation of a phosphodiester bond between adjacent nucleotides with the concomitant hydrolysis of ATP to AMP and inorganic pyrophosphate. Some DNA ligases (such as E. coli DNA ligase) use nicotinamide adenine dinucleotide (NAD) instead of ATP as a cofactor and release AMP and nicotinamide mononucleotide (NMN) as a result of phosphodiester bond formation. In general, DNA ligases will only form this covalent linkage in a duplex molecule, for example at a nick in double-stranded (dsDNA) or when joining cohesive- or blunt-ended dsDNAs (Figure 1, Panel A) (3). RNA ligase, on the other hand, has a preference for single-stranded RNA or DNA (Figure 1, Panels B and C) (4).

The ligation mechanism is essentially identical for both DNA and RNA ligases, and occurs in three stages (Figure 3). First is the formation of an enzyme-nucleotide intermediate through transfer of an adenylyl group (AMP) from either ATP or NAD to the epsilon-amine group of a lysine residue in the enzyme. This results in the release of pyrophosphate when ATP is the cofactor and NMN when NAD is used. Second, the adenylyl group is transferred from the enzyme to the 5′-phosphate of the DNA (DNA ligases) or donor polynucleotide (RNA ligases), thereby activating it. Third, a phosphodiester bond is formed by nucleophilic attack of the 3′-hydroxyl group of the DNA (DNA ligases) or acceptor polynucleotide (RNA ligases) on the activated 5′-phosphate, with concomitant release of AMP.

References

Figure 3. Ligation mechanism. The three step reaction schematic for ATP-dependent DNA ligases is shown. Differences for NAD-dependent ligases and RNA ligases are noted in this legend. Panel A: Transfer of an adenylyl group from ATP (or NAD, such as in the case of E. coli DNA ligase) to the epsilon-amine group of a lysine residue in the enzyme with the concomitant release of pyrophosphate (or NMN when NAD is the adenylyl donor). Panel B: The adenylyl group is transferred from the enzyme to the 5′-phosphate of the DNA. In the case of RNA ligases, it is transferred to the donor polynucleotide. Panel C: Nucleophilic attack by the 3′-hydroxyl group on the activated 5′-phosphate group of the DNA (or acceptor polynucleotide in the case of RNA ligases) forms the phosphodiester bond, with simultaneous release of AMP. For Panels A-C, E = enzyme, lys = lysine residue.
Bacteriophage T4 DNA ligase is the ligase most commonly used in the construction of recombinant DNA molecules for molecular biology applications. It is able to ligate DNA fragments having either complementary cohesive or blunt ends, and has an absolute requirement for ATP as a cofactor; it cannot use NAD. E. coli DNA ligase (which, like most prokaryotic DNA ligases uses NAD as a cofactor instead of ATP) can sometimes be used in place of T4 DNA ligase for ligation of single-strand breaks or joining of DNA molecules with cohesive termini. However, unlike T4 DNA ligase, the E. coli enzyme does not show blunt-ended ligation activity, except under conditions of molecular crowding with PEG 8000 (5). For this reason T4 DNA ligase has become more widely used in DNA manipulations (Table 1). For intermolecular ligations it is important that at least one of the DNA molecules possesses a 5′-phosphate at either end of the dsDNA in order to form a phosphodiester bond. T4 DNA ligase is also used to join adjacent single-stranded DNA (ssDNA) molecules that have been polymerized on a template from primers annealed at separate sites, such as during site-directed mutagenesis.

The various applications that use bacteriophage T4 RNA ligase are indicated in Table 1. This enzyme has been used for many years to label RNA molecules at their 3′-end with a radiolabeled nucleoside 3′,5′-bisphosphate as a complementary approach to labeling the 5′-end using T4 polynucleotide kinase (6). More recently, this enzyme has proved useful in the cloning of full-length cDNAs by circular and 5′-rapid amplification of cDNA ends (RACE) (7,8). The former method involves circularization of first-strand cDNA followed by inverse PCR, whereas the latter involves ligation of an oligonucleotide linker onto the 3′-end of the first-strand cDNA synthesis product, followed by amplification with a primer complementary to this linker and a gene-specific primer.
T4 DNA Ligase
EC 6.5.1.1

Description

In vivo, T4 DNA Ligase (Cat.# M1801, M1794) catalyzes the sealing of single-stranded nicks in double-stranded DNA molecules (1,2). It is commonly used for the joining of two strands of DNA between the 5'-phosphate and the 3'-hydroxyl groups of adjacent nucleotides in either a cohesive-ended or blunt-ended configuration (3; Figure 1, Panel A). The enzyme has also been shown to catalyze the joining of RNA to either a DNA or RNA strand in a duplex molecule, but will not join single-stranded nucleic acids (3).

Applications

• Joining blunt-ended double-stranded DNA.
• Joining cohesive-ended double-stranded DNA.
• Sealing nicks on a DNA or RNA strand annealed to a DNA or RNA (4) complementary strand.

T4 DNA Ligase is a component of the following Promega systems:

• Erase-a-Base® System Plus Vectors (Cat.# E56750)
• Erase-a-Base® System (Cat.# E5750)
• GeneEditor™ in vitro Site-Directed Mutagenesis System(9) (Cat.# Q9280)
• Altered Sites® II in vitro Mutagenesis Systems(9) (Cat.# Q6090, Q6080, Q6511)
• Altered Sites® II Mammalian in vitro Mutagenesis Systems(9) (Cat.# Q5590, Q6000)
• pGEM®-T Vector Systems(9,10) (Cat.# A3600, A3610)
• pGEM®-T Easy Vector Systems(10) (Cat.# A1360, A1380)
• pTARGET™ Mammalian Expression Vector System(9) (Cat.# A1410)
• PinPoint™ Xa-1 T-Vector Systems(9) (Cat.# V2610, V2850)
• Universal Ribocloner® cDNA Synthesis System(9) (Cat.# C4360)

Enzyme Properties

Requirements: Mg²⁺, ATP, DTT (or other reducing agent such as β-mercaptoethanol) (1,2).

Cofactor Concentration: 10mM Mg²⁺, 10µM-100µM ATP (1), 10mM DTT (1).

Optimal Substrate: In vivo, single-stranded nicks in double-stranded DNA molecules (2). In vitro, two double-stranded DNAs containing either blunt (“flush”) or cohesive (“sticky”) ends (1,2,5). In all cases one DNA strand must have a 3'-OH and the other must have a 5'-phosphate.

Typical Working Concentration: 0.1–1.0 units T4 DNA Ligase per 10µl reaction for cohesive-end ligations or nick sealing reactions. Up to ten-fold more ligase may be required for blunt-ended ligations (1).

Optimal pH: The optimum pH range of T4 DNA Ligase has been reported to be 7.0–7.8 (2) or 7.2–7.6 (1).

Kₘ: 5 x 10⁻⁵–5 x 10⁻⁸M for blunt-ended DNA (1,3,6), 6 x 10⁻⁷M for cohesive ends; 1.5 x 10⁻⁹M for nicks (2); 1.4 x 10⁻⁹M for ATP (1).

Stimulators: Polyethylene Glycol (PEG) 6000 or 8000 at 5% (w/v) (or other macromolecules such as Ficoll®, albumin, or glycogen) can stimulate ligation of blunt-ended DNAs over 1,000-fold, as judged by shifts in electrophoretic mobility. Cohesive-ended DNA ligation is stimulated by PEG to a far lesser extent. T4 RNA Ligase greatly stimulates blunt-end ligations (6).

Monovalent cations at low concentration (~20mM) can give slight stimulation (~30%), but at high concentrations they will inhibit ligation (1,7). Polyamines such as spermidine have been reported to both stimulate (1) and inhibit (7) ligation reactions at low (~1mM) concentrations. At higher concentrations polyamines inhibit ligation. HMG 14 has been shown to stimulate blunt-ended ligation by as much as 50% when present at a 50:1 molar ratio of HMG 14:DNA (1).

Alternative Cofactors and Substrates: Double-stranded DNA with blunt ends, single-stranded nicks in DNA/RNA hybrids or RNA/RNA hybrids. In all cases, one DNA or RNA strand must have a 3'-OH and the other must have a 5'-phosphate. Mn²⁺ can substitute for Mg²⁺ with reduced efficiency (1).

Inhibitors: dATP is a competitive inhibitor of ATP in ligation reactions (2). Monovalent cations inhibit ligations with almost no activity seen at greater than 200mM (1,7).
There are conflicting reports concerning polyamines such as spermidine, which are reported to both stimulate (1) and inhibit (7) ligation reactions at low (<1mM) concentrations. At higher concentrations they inhibit ligation (1,7). Ethidium bromide inhibits ligation with an ID₅₀ of approximately 4.3µM (1). Anions are reported to inhibit blunt-end ligations at concentrations greater than 25mM for phosphates and greater than 50mM for salts in general (1). Hexaminecobalt chloride and Cibacron blue F3GA act as inhibitors (1). Excess ATP has been reported to inhibit blunt-ended ligations at high concentration (5mM) (5).

K⁺: 3.5 x 10⁻⁵M for dATP (2).

Temperature Stability: T4 DNA Ligase is inactivated at temperatures above 37°C.

Inactivation: Incubate at 70°C for 10 minutes or add EDTA to 25mM concentration.

Genetic Locus: Bacteriophage T4 gene 30 (1).

Promega Product Information

Source: Purified from an E. coli strain expressing a recombinant clone.

Molecular Weight: 68kDa.

Typical Working Conditions: A typical ligation of cohesive-ended DNA contains 10–200ng of vector DNA and sufficient insert DNA to make a 1:1, 1:3 or 3:1 insert:vector molar ratio. The DNA is incubated in buffer containing 30mM Tris-HCl (pH 7.8), 10mM MgCl₂, 10mM DTT and 1mM ATP in a final volume of 10µl. 0.1–1 unit of T4 DNA Ligase is added. For cohesive-end ligations, incubate at 20–25°C for approximately 3 hours or at 4–8°C overnight. For blunt-end ligations incubate at 15–20°C overnight.

Storage Conditions: Store at −20°C. T4 DNA Ligase is supplied in storage buffer containing 10mM Tris-HCl (pH 7.4), 50mM KCl, 1mM DTT, 0.1mM EDTA and 50% glycerol.

Unit Definition: 0.01 Weiss unit of T4 DNA Ligase is the amount of enzyme required to catalyze the ligation of greater than 95% of HinclI fragments of 1µg of Lambda DNA at 16°C in 20 minutes. (One Weiss unit is the amount of enzyme that catalyzes the conversion of 1nmol of αβγ-PPi into a charcoal-absorbable form in 20 minutes at 37°C in an ATP-PPi exchange form.)

Purity: The purity is ≥90% as judged by SDS-polyacrylamide gels with Coomassie® blue staining.

Activity Assays

Lambda Packaging Efficiency: A control insert is ligated to 1µg of EMBL3 Vector Arms with 2.5 units of T4 DNA Ligase. The ligated DNA is packaged using Packaging® Extract (Cat.# K3151). The packaged phage is diluted 1:10,000 and used to infect bacterial strain LE392. After an overnight incubation at 37°C, the phage titer and the packaging efficiency are measured. The minimum packaging efficiency must be 5 x 10⁶cfu/µg DNA.

Contaminant Assays

Endonuclease Assay: 1µg of pGEM®-5Zf(+) Vector is incubated with 5 units of T4 DNA Ligase in T4 DNA Ligase 1X Buffer (Tables 12,15) for 16 hours at 37°C. Following incubation the DNA is visualized on an ethidium bromide-stained agarose gel to verify the absence of visible nicking or cutting.

Single-Stranded and Double-Stranded DNase Assay: To test for DNase activity, 50ng of radiolabeled single-stranded or double-stranded DNA is incubated with 20 units of T4 DNA Ligase in 1X Buffer (Tables 12,15) for 16 hours at 37°C. Minimum passing specification is <2% release of single-stranded and <1% release of double-stranded radiolabeled nucleotides as monitored by scintillation counting of TCA-soluble material.

RNase Assay: To test for RNase activity, 50ng of radiolabeled RNA is incubated with 20 units of T4 DNA Ligase in 1X Buffer (Tables 12,15) for 5 hours at 37°C. Minimum passing specification is <3% release of radiolabeled nucleotides as monitored by scintillation counting of TCA-soluble material.

Blue/White Cloning Assay: This assay is performed to demonstrate that T4 DNA Ligase is free from contaminating activities, which can affect the efficiency and integrity of plasmid cloning. Any exonuclease or polymerase activity that alters the termini of linearized plasmids during ligation will result in a proportion of white-colored colonies above background levels.

A pGEM® series Vector is linearized with two different restriction enzymes in separate reactions to generate three different types of termini: EcoRI for 5’-overhangs, KpnI for 3’-overhangs, and HindIII for blunt ends. Linearized plasmids are purified, and ligations are performed using 12 units of T4 DNA Ligase in overnight incubations at 4°C. Competent JM109 cells are transformed with ligated plasmids and plated on X-Gal/IPTG/Amp plates. A minimum of 750 colonies is counted. White colonies result from transformation with ligated plasmids that have damaged ends. These white colonies represent the number of false positives expected in a typical cloning experiment. Enzymes that generate overhangs must produce fewer than 2% white colonies and blunt-cutting enzymes must produce less than 5% white colonies. The minimum transformation efficiency must be 1 x 10⁶cfu/µg DNA. Figure 4 includes a diagram of the blue/white color selection protocol.

References

T4 RNA Ligase
E.C. 6.5.1.3

Description
T4 RNA Ligase (Cat.# M1051) catalyzes the ATP-dependent formation of either an intramolecular or intermolecular 3',5'-phosphodiester bond between a donor poly- or oligonucleotide containing a 5'-phosphate group and an acceptor poly- or oligonucleotide containing a 3'-hydroxyl group (1,2). The minimal length of a polyribonucleotide for circularization is 8 bases (3). For an intermolecular reaction the minimum size for an acceptor is a tri-nucleotide, whereas the donor can be as small as a nucleoside 3',5'-bisphosphate (4–6). This enzyme is used to circularize RNA molecules or join them to other RNAs. DNAs can also be used in intra- and intermolecular reactions, although with less efficiency than RNA (7–9).

T4 RNA Ligase is used to specifically label the 3'-end of RNA molecules with 5',32P-radiolabeled nucleoside 3',5'-bisphosphate (e.g., [5',32P]-rA14–20) (10,11). The resulting 3'-end labeled RNAs can be used for enzymatic or chemical sequencing studies or for studies of ribonuclease activity and RNA/protein interactions (12,13). T4 RNA Ligase can also be used in 5'-RACE (Rapid Amplification of cDNA Ends) to ligate a specific oligodeoxyribonucleotide to the 3'-end of the first strand of cDNA synthesis. The oligodeoxyribonucleotide serves as a primer binding site for the upstream primer in 5'-RACE (14). Alternatively, the cDNA may be circularized in an intramolecular reaction for use in circular RACE (cRACE) (15).

T4 RNA Ligase has also been used for the site-specific incorporation of unnatural amino acids into protein (16,17). This involves using T4 RNA Ligase to ligate a CA dinucleotide modified with an unnatural amino acid onto the 3'-terminus of a 3'-CA deficient amber suppressor tRNA. Using this method, it is possible to introduce a variety of labels at specific sites in a protein (18,19). Another useful application of T4 RNA Ligase involves the blunt-end ligation of double-stranded DNA. Although T4 RNA Ligase cannot by itself catalyze this reaction, it can stimulate the activity of T4 DNA Ligase in joining blunt ends by as much as 20-fold (20).

Applications
- Labeling the 3'-end of RNA with cytidine 3',5'-bisphosphate (10,11).
- Cloning of full-length cDNAs/5'-RACE (14,15).
- Intra- and intermolecular ligation of single-stranded DNA, RNA and oligonucleotides (2,7–9,21).
- Incorporation of unnatural amino acids and labels into proteins (16–19).
- Stimulation of blunt-ended ligation efficiency (20).

Enzyme Properties
Requirements: Both Mg2+ and ATP are required for enzyme activity.

Cofactor Concentration: A concentration of 5–10mM Mg2+ is optimal for activity. Concentrations above 10mM are inhibitory (9,22). Although a final ATP concentration of 1mM is used in the unit activity assay (circularization of 5',32P- rA14–20) of T4 RNA Ligase, 100µM ATP is sufficient for ligase reactions (1,9,22).

Optimal Substrate: For intramolecular circularization reactions, the optimal substrate is a polynucleotide with a 5'-phosphate and a 3'-hydroxyl group. For intermolecular reactions, the donor should possess a 5'-phosphate and the acceptor a 3'-hydroxyl. To limit the reaction to a single ligation product, the acceptor should possess a hydroxyl group at both the 5' and 3'-termini, whereas the donor should possess a 5'- and 3'-phosphate. For a single nucleotide donor, the reaction can be driven towards high yields of product by incubating with a molar excess of donor over acceptor (7,10). In contrast, the use of oligonucleotide donors requires an excess of acceptor to donor. A molar ratio of 5:1 is usually optimal (7,8).

Typical Working Concentration: 100 units per milliliter of reaction (10).

Optimal pH: pH 7.5–8.2 (Tris-HCl, 25°C) (1). K_m: For ATP, 12µM (22).

Isoelectric Point: pl = 6.1.

Stimulators: PEG 8000 increases the ligation efficiency of single-stranded DNA 30-fold at a concentration of 25%, whereas the addition of dimethyl sulfoxide (DMSO) to a final concentration of 10–20% increases the yield of RNA ligations 2- to 3-fold (8,11).

References
Alternative Cofactors and Substrates: T4 RNA Ligase can utilize a wide variety of modified nucleoside 3′,5′-bisphosphates as donors in ligation reactions. Examples include 5-bromodeoxyuridine, 2′-O-methylcytidine, and 1-methylguanosine (2).

Inhibitors: The nucleoside 2′,5′-bisphosphate, 2′,5′-ADP inhibits T4 RNA Ligase activity in the presence of magnesium (23).

Inactivation: 65°C for 15 minutes or 100°C for 2 minutes (1,22).

Genetic Locus: Bacteriophage T4 gene 63 (24).

Promega Product Information

Source: Purified from an E. coli strain expressing a recombinant clone.

Molecular Weight: T4 RNA Ligase is a monomeric enzyme with a molecular weight of 43.5kDa (24).

Typical Working Conditions: For ligation of single-stranded nucleic acids to each other use the T4 RNA Ligase 10X Buffer supplied with the enzyme, diluted 1:10 (50mM Tris (pH 7.8), 10mM MgCl₂, 5mM DTT and 1mM ATP) and BSA at a final concentration of 10µg/ml. Incubate at 17–25°C for 10–16 hours (8,14,15,21). Labeling the 3′-end of RNA molecules with cytidine 3′,5′-[32P]-bisphosphates as donors in ligation reactions. Examples include 5-bromo-2′-deoxyuridine, 2′-O-methylcytidine, and 1-methylguanosine (2).

Activity Assay

Functional Assay: The RNA substrate (5′-[32P]-rA₁₄₋₂₀, 10µM of 5′-termini) is ligated in the presence of T4 RNA Ligase 1X Buffer (Table 15) and T4 RNA Ligase for 15 minutes at 37°C. After ligation, the reaction is terminated by heating at 100°C for 2 minutes. The ligated substrate is then treated with 10 units of Calf Intestinal Alkaline Phosphatase (Cat.# M1821) for 10 minutes at 37°C. The amount of phosphatase-resistant substrate is monitored by scintillation counting of the TCA-precipitable material.

Contaminant Assays

DNase Assay: To test for the absence of DNase activity, 50ng of radiolabeled DNA is incubated with 20 units of T4 RNA Ligase in T4 RNA Ligase 1X Buffer (Tables 12, 15) for 3 hours at 37°C. The minimum passing specification is <1% release of radiolabeled nucleotides as monitored by scintillation counting of TCA-soluble material.

RNase Assay: To test for the absence of RNase activity, 50ng of radiolabeled RNA is incubated with 20 units of T4 RNA Ligase in T4 RNA Ligase 1X Buffer (Tables 12, 15) for 3 hours at 37°C. The minimum passing specification is <1% release of radiolabeled nucleotides as monitored by scintillation counting of TCA-soluble material.

Endonuclease Assay: To test for endonuclease activity, 1µg of lambda or pGEM®(d) DNA is incubated with 20 units of T4 RNA Ligase in T4 RNA Ligase 1X Buffer (Tables 12, 15) for 3 hours at 37°C. Following incubation, the DNA is visualized on an ethidium bromide-stained agarose gel to verify the absence of visible nicking or cutting.

References (continued)

Blue/White Color Selection Tips

Cells used for blue/white color selection have a deletion of the lacZ gene (Δlac in genotype). This mutation results in the production of nonfunctional β-galactosidase. However, if the deleted portion of β-galactosidase is supplied by a lacZ-containing plasmid, β-galactosidase activity can be restored. This process is known as α-complementation. Cells that contain an intact lacZ gene (e.g., HB101) cannot be used for blue/white color selection.

- LB medium can be used in place of SOC medium if desired. In our experience the use of SOC medium results in maximum transformation efficiencies.
- Perform a mock transformation of competent cells to which no DNA is added. No colonies should result. Presence of colonies may be the result of inactive antibiotic or contaminated cells.
- Light blue colonies? These colonies may contain inserts. The causes and cures for light blue colonies are discussed in Promega Notes 41.
- It is possible for an insert to ligate into a vector in-frame and not disrupt the lacZ gene. This is more likely to happen with shorter inserts. In such a case the diphosphorylated vector-only control will contain few colonies but the insert-plus-vector plate will contain many blue colonies.
- An alternative to preparing plates containing X-Gal and IPTG is to spread 20µl of 50mg/ml X-Gal and 100µl of 0.1M IPTG onto previously prepared LB/antibiotic plates. Allow these components to absorb for at least 30 minutes (or until the plate surface appears dry) at 37°C prior to plating cells.
- When cloning PCR products, the desired PCR product should be purified away from nonspecific products, especially primer-dimers. Primer-dimers ligate efficiently and will generate many white colonies that appear to contain no insert.
- Only cells that overexpress the lac repres- sor (lacI in genotype) need to be plated on IPTG-containing plates. IPTG inactivates the lac repressor allowing the lac promoter to function. Overexpression of the lac repressor is desirable because it allows control of expression of plasmids containing lac or lacI promoters.
- In JM109 cells, the lacZ gene harboring a deletion of the α-peptide, which is required for blue/white color selection, is located on the F episome. JM109 cells used to prepare competent cells should be maintained on M9 minimal medium to prevent loss of the F episome. White colonies that do not contain inserts are generally the result of loss of the F episome.

Blue/White Color Selection

1. Pre-chill sterile 17 x 100mm polypropylene culture tubes (e.g., Falcon 2059) on ice, one per transformation.
2. Remove frozen competent cells from −70°C and place on ice for 5 minutes or until just thawed. Competent cells will quickly lose their competency if warmed above 4°C.
3. Gently mix the cells by flicking the tube and transfer 100µl of the thawed competent cells to each of the pre-chilled culture tubes.
4. Add 1–50ng of ligated DNA (in a volume not greater than 10µl) to competent cells. Transformation efficiency will decrease with greater amounts of DNA. Move the pipette tip through the cells while dispensing. Quickly flick the tube several times. Do not pipet or vortex to mix.
5. Immediately return the tubes to ice for 10 minutes.
6. Heat-shock the cells for 45–50 seconds in a water bath at exactly 42°C. DO NOT SHAKE.
7. Immediately place the tubes on ice for 2 minutes.
8. Add 900µl of cold (4°C) SOC or LB medium to each transformation reaction then incubate for 60 minutes at 37°C with shaking (approximately 225rpm).
9. For each transformation reaction, we recommend diluting the cells 1:10 and 1:100 in medium, and plating 100µl of the undiluted, 1:10 and 1:100 dilutions on antibiotic plates. The 1:100 dilution may be omitted for transformations from ligation reactions. Plate the transformed cells on LB plates containing100µg/ml ampicillin, 0.1mM IPTG and 40µg/ml X-Gal.
 Most plasmids used for routine subcloning contain the gene for β-lactamase (Ampr) and should be selected for using liquid and solid medium containing 100µg/ml ampicillin. Other common selectable markers include tetracycline (use at 12.5µg/ml plates, 10µg/ml in liquid culture), chloramphenicol (use at 20µg/ml) and kanamycin (use at 30µg/ml). Antibiotics are heat sensitive; do not add to culture medium above 55°C.
10. Incubate the plates at 37°C for 12–14 hours (overnight).
11. Colonies that contain recombinant plasmid (disruption of lacZ α-peptide) will appear white while colonies that contain nonrecombinant plasmid (intact lacZ α-peptide) will appear blue.

Further information on bacterial transformation and blue/white color selection can be found in Promega’s Protocols and Applications Guide, Third Edition (pp. 46, 51, 383), and in Promega Technical Bulletin #TB096.
Kinases and Phosphatases

Introduction

Kinases and phosphatases are common reagents in modern day molecular biology laboratories. Although there are a variety of sources for these enzymes, the most common are calf intestinal alkaline phosphatase (CIAP) and T4 polynucleotide kinase (T4 PNK). Their most frequent use is to modify the phosphorylation state of the 5’-ends of DNA molecules (Figure 1, Panels D-H).

CIAP is most commonly used to remove 5’-phosphates from vector DNA to prevent self-ligation during cloning. Only one strand of a DNA duplex must be joined prior to bacterial transformation; the other will remain nicked until it is repaired inside the bacteria. While the vector DNA is dephosphorylated, the insert DNA should not be dephosphorylated as 5’-phosphates are required for a successful ligation reaction. CIAP is also used to end-label DNA fragments by removing 5’-phosphates, making the DNA fragments better T4 PNK substrates.

Synthetic DNA, usually in the form of custom-made oligonucleotides, is devoid of 5’-phosphates and is therefore a less than ideal template for ligation reactions. T4 PNK is routinely used to transfer a γ-phosphate from a nucleotide triphosphate (usually ATP) to the 5’-end of oligonucleotides to facilitate ligation (Figure 5, Panel A). For blotting, gel-shift or sequencing procedures, [γ-32P]ATP is used as the phosphate donor, resulting in a radiolabeled species. The 5’-end of a DNA molecule generated by restriction endonuclease cleavage can also be labeled, even though a phosphate already exists at that position. This can be achieved either by making use of the exchange activity of T4 PNK to exchange the existing phosphate with a radiolabeled phosphate from the phosphate donor (Figure 5, Panel B), or by first treating the DNA with CIAP to remove the existing phosphates, then adding the radiolabeled phosphate with PNK via the forward reaction, which will result in a high specific activity (Figure 5, Panel A). Finally, T4 PNK has a 3’-phosphatase activity that can be used to remove phosphate groups from the 3’-terminus of DNA and RNA (Figure 5, Panel C).

Although both enzymes are most commonly used for cloning purposes, they have other activities and are also used for other types of studies. These other activities will be listed in further detail in the following section. The robustness and versatility of CIAP and T4 PNK have made them staples in today’s molecular biology applications.

Figure 5. Multiple activities associated with T4 polynucleotide kinase. Panel A: The transfer of a phosphate from a nucleoside 5’-triphosphate to the 5’-OH group of an acceptor molecule by T4 polynucleotide kinase, via the forward reaction. R1 = H, a nucleoside, a nucleotide or a polynucleotide: R2 = H or OH. Panel B: With excess ADP an exchange reaction can occur. A = adenine; R1 = H, a nucleoside, a nucleotide or a polynucleotide; R2 = H or OH; * = 32P. Panel C: The hydrolysis of a 3’-phosphoryl group by the 3’-phosphatase activity of T4 polynucleotide kinase. R1 = H, PO42-, a nucleotide or a polynucleotide. For Panels A–C, B = adenine, guanine, cytosine, thymidine or uracil.
T4 Polynucleotide Kinase
E.C. 2.7.1.78

Description
T4 Polynucleotide Kinase (polynucleotide 5'-hydroxyl-kinase or ATP:5'-dephospho-polynucleotide 5' phosphatase)

T4 Polynucleotide Kinase (T4 PNK; Cat.# M4101, M4103) is a tetramer composed of identical subunits and has multiple activities. The 5'-kinase activity of T4 PNK catalyzes the transfer of the γ-phosphate from NTP to the 5'-OH terminus of mono- or polynucleotides (Figure 5, Panel A;1). The reaction is reversible and in the presence of a nucleotide diphosphate such as ADP the enzyme has 5'-phosphatase activity (2). Dephosphorylation and subsequent rephosphorylation allow the enzyme to transfer phosphates between ATP and a 5'-phosphate group on an acceptor molecule in an exchange reaction (Figure 5, Panel B; 3). T4 PNK also has 3'-phosphatase activity (Figure 5, Panel C;4). For a review of T4 PNK see references 3, 5 and 6.

T4 PNK can be used to phosphorylate RNA, DNA and synthetic oligonucleotides prior to subsequent manipulations such as ligation. Radioactive phosphate can be used as a label for DNA sequencing (7,8), gel shift analysis (9), footprinting (10), primer extension (11), and restriction mapping (12,13). Labeling of the 5'-ends of DNA and RNA may be done using a dephosphorylated template (5'-OH) using the forward or 5'-kinase reaction (Figure 5, Panel A). Alternatively, labeling of 5'-ends can be achieved without removal of the existing 5'-phosphate using the exchange reaction (Figure 5, Panel B; 2,14,15). The reaction conditions for the forward and exchange reactions are not the same. The forward reaction generally results in better incorporation. T4 PNK can also be used to remove 3'-phosphates from DNA and RNA (Figure 5, Panel C; 4).

Applications
• 5' end-labeling of ss- and dsDNA and RNA (1,14,16).
• Phosphorylation of insert DNA prior to ligation.
• Phosphorylation of oligonucleotides.
• Removal of 3'-phosphates (4).

T4 Polynucleotide Kinase is a component of the following Promega systems:
• fmo® DNA Cycle Sequencing Systems® (Cat.# Q4100, Q4110)
• OmniBase® DNA Cycle Sequencing Systems® (Cat.# Q6800, Q4550)
• TaqTrack® Sequencing Systems (Cat.# Q6530)
• DNA 5' End-Labeling System (Cat.# U2010)
• Universal RiboClone® cDNA Synthesis System (Cat.# C4360)
• Gel Shift Assay Systems (Cat.# E3050, E3030)

• Primer Extension System - AMV Reverse Transcriptase (Cat.# E6030)
• Core Footprinting System (Cat.# E3730)
• 5' End-Labeling Application Pack (Cat.# M7700)

Enzyme Properties
Requirements: 5'-kinase (forward), exchange and 3'-phosphatase reactions require Mg²⁺ (1,2,17). A sulfhydryl compound such as DTT is essential for activity (2).

Cofactor Concentration: For the 5'-kinase reaction, 10mM Mg²⁺ optimal at pH 7.6 (1). For the 3' phosphatase reaction, 8mM Mg²⁺ optimal (17).

Optimal Substrate
5'-Kinase Activity: ss- and dsDNA, ss- and dsRNA, synthetic oligonucleotides and nucleoside 3'-monophosphates (Figure 5, Panel A; 3). 5'-OH groups on ssDNA overhangs in dsDNA are phosphorylated more efficiently that 5'-OH groups on blunt or 5' recessed ends (3). With increased concentration of ATP or enzyme, blunt- and 5'-recessed ends can be completely phosphorylated (3,5). Phosphorylation of 5'-OH groups located at nicks in dsDNA is 10–30X slower than for ssDNA (14,18). The reaction does not differ significantly for substrates 0.15–50kb in length (5). T4 PNK can also phosphorylate a variety of modified nucleotides and non-nucleotide substrates (6). Nucleosides (adenosine), nucleoside 2'-phosphates, 3'-termini, or 5'-termini bearing phosphomonoesters are not substrates (19).

Exchange Reaction: ss- and dsDNA (6; Figure 5, Panel B). 5'-overhangs of dsDNA and single-stranded oligonucleotides are more efficient substrates than 5'-recessed or blunt ends (20). 5'-recessed and blunt ends are labeled 15–25% as efficiently as 5'-overhangs (20). 5'-phosphate groups at nicks are the most difficult to exchange (30X less efficient than 5'-overhangs [14]). Some RNA species can act as substrates for phosphate exchange (6).

5'-Phosphatase Activity: DNA, RNA, oligonucleotides, 3',5'-bisphosphates (6).

Figure 6. T4 polynucleotide kinase labeling efficiency. Labeling of oligonucleotides by T4 polynucleotide kinase is dependent, in part, on the identity of the 5'-nucleotide, with 5'-cytidine having the lowest labeling efficiency (33).

References
3'-Phosphatase Activity: Deoxynucleotide 3'-monophosphates, ss- and dsDNA (17; Figure 5, Panel C). Extracts of T4-infected E. coli have no phosphatase activity on 3'-phosphoryl groups of RNA and ribonucleotides (17). However, the purified enzyme is reported to have weak 3'-phosphatase activity on RNA (4).

Phosphate Donor: ATP, CTP, UTP, GTP, dATP, and dTTP function equally well (3). Phosphate Donor:

Optimal pH

5'-Kinase Activity: pH 7.4–8.0 in Tris-HCl buffer for DNA substrates (1). Maximal activity at pH 7.6 (19). For ss-oligonucleotide substrates an optimal pH of 9.5 in glycine-NaOH buffer has been reported (2).

Exchange Reaction: pH 6.2–6.6 in imidazole-HCl buffer (14). At pH 7.6 the exchange reaction is 20% as efficient as at pH 6.2 (6).

5'-Phosphatase Activity: pH 6.2–6.5 in imidazole-HCl buffer (2, 14).

3'-Phosphatase Activity: pH 5.6–6.4 depending on buffer (5, 18), pH 6.0 in imidazole-HCl buffer optimal (5).

Km

5'-Kinase Activity: 4–260µM for ATP (pH 8.0 at 37°C) depending on DNA substrate (14, 23). The Km for DNA ranges from 7.6µM for large DNA fragments and between 1.8–143µM for nucleoside 3'-monophosphates and oligonucleotides depending on the 5' base and the length of the oligonucleotide (23). For the forward reaction the Km for ATP is 4µM. For the reverse reaction the Km for ADP is 200µM (14).

5'-Phosphatase Activity: ADP, 200µM for dsDNA 5'-overhangs at pH 7.4 (14).

Stimulators

5'-Kinase Activity: Spermidine (1.7mM optimal) can increase the rate of the reaction three-fold (24). Spermidine promotes tetramer formation (25). Salts such as NaCl, KCl and CaCl2 (125mM optimal) can increase activity up to 5X (24). LiCl and NH4Cl give similar stimulation (24). This effect is the same for 5'-overhangs on dsDNA and ssDNA, oligo and mononucleotides (24). Conversely, KCl decreases phosphorylation of 5'-recessed ends and at nicks (18). A sulfhydryl compound such as DTT (5mM DTT optimal) is essential for activity (19). 10mM 2-mercaptoethanol and 10mM glutathione result in 80% and 70%, respectively, of the activity observed with DTT (19). In the absence of a sulfhydryl compound only 2% of the optimal activity is observed. Several anions (at 125µM) are stimulatory, with Cl–, Br– > F–, NO3–, SO42– (24). PEG 8000 at 4–6% improves the efficiency of labeling 5'- and 3'-overhangs, blunt ends and at nicks (26).

Exchange Reaction: In the presence of ADP, the phosphorylation reaction can be reversed and T4 PNK can remove a 5'-phosphate to yield a 5'-OH terminated molecule and ATP (2, 3). PEG 8000 improves the efficiency of the exchange reaction (26). Spermidine has no significant effect on the exchange reaction (6).

3'-Phosphatase Activity: 2-mercaptoethanol, glutathione and DTT maintain activity during long (>10 minutes) reactions (17). No effect seen for reactions <10 minutes. 0.3M NaCl promotes the 3'-phosphatase activity over the 5'-phosphatase activity (27).

Alternative Cofactors and Substrates

5'-Kinase Activity: Mn2+ can partially fulfill the requirement for the divalent cation. 3.3mM is optimal and results in 50% the maximal activity with Mg2+ (19).

3'-Phosphatase Activity: Co2+ ions can replace Mg2+ ions. At 0.8mM, the activity is 140% the optimal activity with Mg2+. At 0.08mM, 70% activity is observed (17).

Inhibitors

5'-Kinase Activity: Phosphate (P) and pyrophosphate (PP) anions are inhibitors of T4 PNK (24, 28). Ammonium ions are strong inhibitors of T4 PNK (22). DNA should not be dissolved in or precipitated from buffers containing ammonium salts prior to treatment with kinase. Sulfate containing polymers (e.g., agar, dextran sulfate and heparin) are inhibitors of T4 PNK (29). However, addition of cationic compounds such as spermine or polylysine can counteract the inhibition (6). Nonsulfate polysaccharides have no effect on T4 PNK.

Exchange Reaction: Phosphate ions; 50mM potassium phosphate results in 60% inhibition (2). Exchange Reaction: Phosphate ions; 50mM potassium phosphate results in 60% inhibition (2).

Kc: 29mM (P), 2mM (PP) (24).

Temperature Stability: T4 PNK is active over a range of temperatures. Different temperature optima have been reported; 37°C (5), 30–35°C (23). At 0°C the rate of the 5'-kinase reaction is reduced to 7% and at 37°C (23). At 0°C the exchange reaction is reduced to 1.2% the rate at 37°C (25).

Inactivation: 68–70°C for 10 minutes (11, 30); 78°C for 1 minute (6). Reactions can also be terminated by addition of 20mM EDTA.

Genetic Locus: Bacteriophage T4 psdT.

References (continued)

21. DNA 5' End-Labeling System # TB096, Promega Corporation.
Promega Product Information

Source: Purified from an *E. coli* strain expressing a recombinant clone.

Molecular Weight: T4 PNK is a tetramer composed of identical subunits. The relative mobility of the monomers as measured by SDS-PAGE is 33kDa (31), by centrifugation: 33.2kDa (25). From the sequence of T4 PNK, the monomer consists of 301 amino acids with a predicted molecular weight of 34kDa (32). The molecular weight of the tetramer as estimated by gel filtration is 140kDa (32), by centrifugation, 147.3kDa (25). Monomers and dimers are not enzymatically active (6).

Typical Working Conditions: ATP at ≥2–5 fold molar excess over DNA ends results in ≥95% phosphorylation of 5′-overhangs (6). Increasing concentration of ATP to 100-fold molar excess will allow complete labeling of blunt ends or recessed 5′-ends (6,18).

Protocols for using T4 PNK are available from Promega (21,22).

Storage Conditions: Store at –20°C. T4 Polynucleotide Kinase is supplied in 20mM Tris-HCl (pH 7.5), 25mM KCl, 2mM DTT, 0.1mM EDTA, 0.1µM ATP and 50% (v/v) glycerol.

Unit Definition: One unit is defined as the amount of T4 PNK required to catalyze the transfer of 1 nanomole of phosphate to the 5′-OH end of a polynucleotide from [γ-32P]ATP in 30 minutes at 37°C. The reaction conditions are: 40mM Tris-HCl (pH 7.5), 10mM MgCl2, 5mM DTT, 0.1mM [γ-32P]ATP, 0.5mM 5′-OH polynucleotide end concentration.

Purity: The purity is >90% as judged by SDS-polyacrylamide gels with Coomassie® blue staining.

Activity Assays

End Labeling: To test for activity, 5pmol of dephosphorylated primer is incubated with 8 units of T4 PNK for 1 hour at 37°C in 1X Kinase Buffer (Tables 12, 15) containing [γ-32P]ATP. Following incubation, the amount of [γ-32P]ATP converted to TCA-insoluble material is determined. The minimal passing specification is >20% incorporation.

Sequencing Assay: This enzyme has been tested and qualified for performance in the TaqTrack® Sequencing Systems.

Contaminant Assays

endonuclease Assay: To test for endonuclease activity, 1µg of supercoiled plasmid DNA is incubated with 25 units of T4 PNK for 5 hours at 37°C in 1X Kinase Buffer (Tables 12, 15). Following incubation, the supercoiled DNA is visualized on an ethidium bromide-stained agarose gel to verify the absence of visible nicking or cutting.

DNase and RNase Assay: To test for nuclease activity, 50ng of radiolabeled DNA or radiolabeled RNA is incubated with 25 units of T4 Polynucleotide Kinase in 1X Kinase Buffer (Tables 12, 15) for 3 hours at 37°C, and the release of radiolabeled nucleotides is monitored by scintillation counting of TCA-soluble material. Minimum passing specification is <3% release for both DNase and RNase.
Calf Intestinal Alkaline Phosphatase
E.C. 3.1.3.1

Description
Calf Intestinal Alkaline Phosphatase (CIAP; Cat.# M1821 and M2825) is a phospho-
monoesterase that catalyzes the hydrolysis of 5'- and 3'-phosphates of DNA, RNA and
nucleotides. CIAP is primarily used to dephosphorylate vector DNA prior to cloning
and for removal of 5'-phosphates from RNA and DNA before labeling with [γ-32P]NTP and
T4 polynucleotide kinase. CIAP has also been widely utilized to dephosphorylate pro-
teins. In contrast to acid phosphatases, CIAP can be utilized for in vitro dephosphorylation
of proteins under conditions that do not denature the substrate protein (1). CIAP-effectively
dephosphorylates proteins containing phosphoserine, phosphothreonine and phospho-
yrosine, although it can show preferential dephosphorylation of phosphoty-
rine under certain conditions (2).

Applications
• Dephosphorylation of 5'-phosphorylated ends of cloning vectors.
• Dephosphorylation of 5'-phosphorylated
ends of DNA or RNA for subsequent label-
ing with [γ-32P]NTP and T4 Poly-
nucleotide Kinase.
• Dephosphorylation of proteins.

CIAP is a component of the following Promega
systems:
• Core Footprinting System (Cat.# E3730)
• DNA 5' End-Labeling System (Cat.# U2010,
M7700)
• Subcloning Application Pack (Cat.# M7670)

Enzyme Properties

Requirements: 2mM, Mg2+ (3).

Optimal Substrate: 5'– and 3'-phosphates of DNA, RNA and nucleotides.

Typical Working Concentration: 0.01 unit/pmol
DNA ends.

Optimal pH: 9.1–10.5. (CIAP is stable at pH 7.5–9.5, but is rapidly inactivated at acidic
pH). Ks: 9.6µM and 1.5mM at pH 8.0 and 10.0, respectively, for p-nitrophenylphosphate (4).

Inhibitors: P, inositol hexaphosphate (5,6).
K: 16.5µM at pH 9.2 for P, (6).

Inactivation: 65°C for 45 minutes or 75°C for
10 minutes.

Promega Product Information

Source: Calf intestinal mucosa.
Molecular Weight: 68kDa.

Typical Working Conditions: 50mM Tris–HCl (pH 9.3 at 25°C), 1mM MgCl2, 0.1mM ZnCl2 and
1mM spermidine.

Storage Conditions: Store at –20°C. CIAP is supplied in storage buffer containing 10mM
Tris–HCl (pH 8.0), 1mM MgCl2, 0.1mM ZnCl2, 50mM KCl and 50% (v/v) glycerol.

Unit Definition: One unit is defined as the
amount of enzyme required to catalyze the hydrolysis of 1µmol of 4-nitrophenyl phos-
phate per minute at 37°C in 1M diethanol-
amine, 10.9mM 4-nitrophenyl phosphate, 0.5mM MgCl2 (pH 9.8).

Contaminant Assays

Endonuclease Assay: 1µg of supercoiled plas-
mid DNA is incubated with 5 units of CIAP in
1X Reaction Buffer (Tables 12, 15) for one
hour at 37°C. Following incubation, the
supercoiled DNA is visualized on an ethid-
ium bromide-stained agarose gel to verify the
absence of visible nicking or cutting.

Exonuclease Assay: To test for DNase and
RNase activity, 50ng of radiolabeled DNA or
radiolabeled RNA is incubated with 5 units of
Calf Intestinal Alkaline Phosphatase in 1X
Reaction Buffer (Tables 12, 15) for one hour
at 37°C, and the release of radiolabeled
nucleotides is monitored by scintillation
counting of TCA-soluble material. Minimum
passing specification is ≤3% release for both
DNase and RNase.

Blue/White Cloning Assay: Five micrograms of
pGEM®-3Zf(+) Vector is digested with repre-
sentative restriction enzymes (leaving 5'-
termiri, 3'-termini or blunt ends). The termini
are treated with 5 units of CIAP in 1X Alkaline
Phosphatase for 1 hour at 37°C, and the release of radiolabeled
mid DNA is incubated with 5 units of CIAP in
1X Reaction Buffer (Tables 12, 15) for one
hour at 37°C. Following incubation, the

 references
1. van de Sande, J.H. et al. (1973) Biochemistry 12, 5050.
5’ End-Labeling Protocol

Dephosphorylation:

- The forward reaction is much more efficient than the exchange reaction for labeling of phosphorylated ends. Promega Technical Bulletin #TB519 contains a protocol for labeling phosphorylated DNA via the exchange reaction.
- The template used should be gel-purified. Contamination by short oligonucleotides or RNA will lower the efficiency of labeling. Consider the use of glycogen instead of tRNA for efficient precipitation of oligonucleotides.
- Oligonucleotides are synthesized with a 5’-hydroxyl group. They can be labeled directly in the forward reaction without prior dephosphorylation.
- Ammonium ions are strong inhibitors of T4 Polynucleotide Kinase; therefore, DNA should not be dissolved in, or precipitated from, buffers containing ammonium salts prior to treatment with T4 PNK.
- The final ATP concentration in the forward reaction should be at least 1µM.
- Equal concentrations of ATP and 5’ ends result in about 50% labeling of oligonucleotides. To obtain higher specific activity, the ATP:oligonucleotide ratio should be increased to 10:1. Only 10% of the label will be transferred but virtually every oligonucleotide molecule will be labeled (1).
- 0.5pmol of linear DNA equals 1pmol of 5’ ends. To convert µg DNA to pmol: For dsDNA: µg x 10^6 /npk x pmol/660pg x N = pmol where N is the number of nucleotide pairs and 660pg/pmol is the conversion factor for a nucleotide pair.
- For ssDNA: µg x 10^7 /npk x pmol/330pg x N = pmol where N is the number of nucleotides and 330pg/pmol is the conversion factor for a single nucleotide.
- Single-stranded DNA and double-stranded DNA containing 5’-overhangs are labeled more efficiently than 5’-recessed (5’-recessed or blunt) ends. Labeling of blunt or recessed ends can be improved by increasing the concentration of ATP in the reaction or by denaturing the template with heat or NaOH prior to labeling (1,2).
- Alternative protocols involving the addition of PEG 8000 to the reaction may also be used to increase the labeling efficiency of these templates (1,2).

References

Dephosphorylation of 5’-Protruding Ends Using Calf Intestinal Alkaline Phosphatase (CIAP):
1. Dilute sufficient CIAP for immediate use in CIAP 1X Reaction Buffer to a final concentration of 0.01u/µl. Each pmol of DNA ends will require 0.01u CIAP (added in two aliquots of 0.005u/µl ends).
2. Purify the DNA to be dephosphorylated by ethanol precipitation and resuspend the pellet in 40µl of 10mM Tris-HCl (pH 8.0). Set up the following reaction:
3. Deionized water to a final volume of 50µl
Note: CIAP may be added directly to digested DNA. Add 5uL 10X CIAP Reaction Buffer, 0.005u CIAP/µl ends, and water to a final volume of 50µl.
4. Incubate at 37°C for 30 minutes.
5. Add 300uL CIAP stop buffer (10mM Tris-HCl [pH 7.5], 1mM EDTA, 200mM NaCl, 0.5% SDS). Phenol:chloroform extract and ethanol precipitate by adding 5mM NaCl to a final concentration of 0.2M and 2 volumes of 100% ethanol to the aqueous phase.

Dephosphorylation of 5’-Recessed or Blunt Ends:
When 5’-recessed or blunt ends are used as the substrate prepare CIAP by diluting the required amount in 1X Reaction Buffer (Table 15) to a final concentration of 0.01u/µl. Each pmol of DNA ends will require 0.01u CIAP (added in two aliquots of 0.005u/µl ends). Add the first aliquot of CIAP and incubate at 37°C for 15 minutes and then at 56°C for 15 minutes. Add a second aliquot of CIAP and repeat the incubations at both temperatures. The higher temperature ensures accessibility of the recessed ends.

5’ End-Labeling Protocol, Forward Reaction, Using T4 Polynucleotide Kinase
1. Assemble the following reaction in a sterile microcentrifuge tube:
2. Incubate at 37°C for 10 minutes.
3. Stop the reaction by adding 2µl of 0.5M EDTA.
4. If desired, the labeled DNA can be separated from unincorporated labeled nucleotides by chromatography, by spin columns or by ethanol precipitation. However, it is generally not necessary to purify phosphorylated DNA to be used as hybridization probes or as primers for sequencing. But if the measured incorporation is low (below 30%) or if background problems are experienced, removal of unincorporated nucleotides may be desired. If the labeled DNA fragment is greater than 200bp, the Wizard® DNA Clean-Up System® (Cat.# A7380) may also be used. See Promega’s Protocols and Applications Guide, Third Edition (pp. 128–129), for more information.

Further information on the removal and addition of 5’-phosphates can be found in Promega’s Protocols and Applications Guide. Third Edition (pp. 44, 125) and in Promega Technical Bulletins TB096 and TB519 and Product Information Sheet #9P1M182.
RecA Protein and AgarACE® Enzyme

Introduction
RecA Protein and AgarACE® Enzyme are included in this Cloning Enzyme Guide because of their applications for nucleic acid purification or protection in cloning procedures. The RecA protein has the amazing capacity to facilitate the pairing of DNA molecules (for recent reviews see references 1 and 2). Agarases, such as AgarACE® Enzyme, have become a popular tool to liberate DNA from the commonly used electrophoretic separation matrix, agarose.

RecA Protein
RecA forms a helical filament on single-stranded DNA, with a stoichiometry of one RecA monomer per 3 bases of ssDNA. RecA protein binds ATP in addition to DNA, and ATP binding is required for nucleicprotein filament assembly, homology searching, and DNA strand exchange (Figure 1, Panel I). ATP hydrolysis is not required for any of these processes, but it is required for disassembly of the nucleicprotein filament (i.e., dissociation of the RecA protein) upon completion of DNA strand exchange, bypass of structural barriers in DNA during replication, and 4-strand exchange reactions. RecA is also involved in the SOS response of bacteria. As cellular DNA damage levels increase to the point where replication is impeded, RecA protein can assemble a nucleicprotein filament on ssDNA that accumulates as a result of interrupted replication. The nucleicprotein filament facilitates autocatalytic cleavage of the LexA repressor and other proteins, such as the bacteriophage λ cl repressor. This coprotease activity of RecA results in the derepression of over 20 genes regulated by LexA and the induction of bacteriophage λ lysogens (1,2). One of the more useful in vitro properties of RecA is its ability to locate and pair its DNA substrate sequence to its homologous dsDNA sequence in the presence of ATPyS (Figure 1, Panel I). This behavior has been exploited to enrich for specific DNA fragments (3–5), and to protect specific DNA sites from methylation or endonuclease cleavage (RecA-assisted restriction endonuclease, RARE [6], Achilles’ heel cleavage [7,8; Figure 9]).

AgarACE® Enzyme
Agarose gels are widely used in the electrophoretic separation of polynucleotides. A highly heterogeneous polysaccharide, agarose is an alternating copolymer of 3-linked β-D-galactopyranose and 4-linked 3,6-anhydro-α-L-galactopyranose. Agarase enzymes are secreted by a wide variety of organisms as a means of degrading plants containing agaroses, and are classified as a wide variety of organisms as a means of degrading plants containing agaroses, and are classified as α or β agarases, depending on whether they cleave α or β intersaccharide linkages. The majority of reported agarases are of the β type, and most degrade agarose into mixtures of short polysaccharides (i.e., small sugars).

Although a large number of organisms secrete enzyme mixtures that completely hydrolyze unmelted agarose, all reported individual enzymes (and all tested mixtures of individual agarases) require melting of the agarose prior to enzyme treatment in order to obtain complete hydrolysis. As a hot agarose solution cools, it reaches a loose gel state in which agarose chains form double helices joined in loosely associated bundles or fibrils, called the gel I state. As the gel cools further, the bundles further associate with each other to a point where the bundles of agarose chains form an extended network and a hardened agarose gel is formed, called the gel II state, used for running electrophoresis gels (9). Agarases will attack agarose in either the gel I or gel II state, but will not attain complete hydrolysis of the most tightly bundled helices, presumably due to steric considerations.

For this reason, commercially available agarases require that the agarose be melted completely prior to enzyme treatment. For low melting agaroses, this means treatment at 70°C; for regular agarose, it requires 95–100°C. Since the enzymes are typically inactivated at these high temperatures, the agarose must be rapidly equilibrated to lower temperatures prior to enzyme treatment, and care must be taken to ensure that the gel I state agarose does not begin to form.

AgarACE® Enzyme, isolated from a Flavobacterium sp. from the Dry Tortugas (10), is somewhat more thermostable than other known agarases, thus many of the typical difficulties of this equilibration step are avoided (11). AgarACE® Enzyme also exhibits unusual activity in high concentrations of KI and NaI, which allows protocols to be developed for easy recovery of polynucleotides from regular agarose gels (12). AgarACE® Enzyme also has a broad pH optimum, which allows its use in all common electrophoresis buffers without adjustment of unit addition or presoaking of gels to attain optimum activity. It also exhibits fast reaction rates, so Promega’s standard unit definition is based on 15-minute hydrolysis times, as opposed to the industry standard 1 hour.

Since the polynucleotides are typically recovered in the electrophoresis buffer, some downstream applications can be negatively affected by either the high pH or the buffering of the solution. In rare cases, some inhibition has been seen due to residual oligosaccharide, and even more rarely, from the enzyme itself. In the first 2 cases (pH and buffering), soaking the gel prior to hydrolysis generally eliminates the problem. In the first three cases, ethanol precipitation after hydrolysis generally alleviates any problems, and high recoveries are typically obtained due to the fact that AgarACE® Enzyme also precipitates and acts as a carrier.

References
References

RecA Protein

Description

The E. coli RecA protein plays a central role in homologous recombination, post-replication repair and the SOS response to DNA damage (for reviews see references 1–6). The purified RecA Protein (Cat.# M1691) binds cooperatively and stoichiometrically to single-stranded DNA (ssDNA) and is a prototype for DNA strand-exchange proteins. The active species in strand exchange is a nucleoprotein filament containing one RecA Protein monomer (38kDa) per 3 bases of ssDNA. ATP hydrolysis is not required for filament formation or parameric pairing to duplex DNA, but ATP hydrolysis is required for unidirectional DNA strand exchange, dissociation of the protein, bypass of structural barriers in DNA during replication and 4-strand exchange reactions.

One of the more useful in vitro properties of RecA is its ability to locate and pair a ssDNA sequence to its homologous dsDNA sequence in the presence of ATP[Y5]. This behavior has been exploited for enrichment of specific DNA sequences (7–9), and to protect specific DNA sites from methylation or endonuclease cleavage (RecA-assisted restriction endonuclease, RARE [10]; Achilles' heel cleavage [11,12; Figure 9]).

Applications

- Enrichment method for genomic cloning (7–9).
- Sequence-specific cleavage of large fragments of DNA (RecA-assisted restriction endonuclease [RARE10]; Achilles' heel cleavage [11,12]).
- D-loop mutagenesis (13).
- Coating of DNA with RecA Protein to enhance contrast of electron micrographs (14,15).

Enzyme Properties

Requirements: ATP, MgCl₂

Cofactor Concentration: 10mM MgCl₂ in the presence of ATP (6).

Optimal Substrate: ssDNA.

Typical Working Concentration: Varies with the application, but at enzyme concentrations above 0.2µM, ATP hydrolysis becomes linear (6).

Optimal pH: Above pH 7, binding to ssDNA is much faster than binding to dsDNA. Binding to dsDNA, pH 6.0 (25°C) (16); DNA-independent ATP hydrolysis, pH 6.0 (25°C) (17), gives a Kcat of 0.1 min⁻¹ and the Km drops to 0.015 min⁻¹ at pH 7.5; ssDNA-dependent ATP hydrolysis, no dependence on pH between 5.5 and 9.0 (17).

Kcat: ATP range from 20µM for ssDNA to 100µM for dsDNA based on initial velocity measurement (18).

kcat: When RecA is bound to ssDNA, it hydrolyzes ATP with a kcat of 28–30 min⁻¹ at 37°C (17). When RecA is bound to dsDNA, it hydrolyzes ATP with a kcat of 20–22 min⁻¹ at 37°C (16).

RecA Filament Assembly: On ssDNA circles over 8,000 nucleotides long, filament formation is completed in less than 2 minutes at 37°C. Assuming a single nucleation event per circle gives a rate of filament extension at 1,100 RecA monomers per minute (19). Extension is polar and proceeds from 5′→3′; therefore, there is a much greater likelihood that the 3′-ends of linear ssDNA will be coated with RecA monomers than the 5′-ends (20).

RecA Filament Disassembly: RecA also displays a polar filament disassembly behavior on linear ssDNA, such that monomers come off at the end opposite to that where filament extension occurs; therefore, both processes proceed 5′→3′ (21). Using dATP instead of ATP can prevent filament disassembly.

Alternative Co-factors and Substrates: dATP, UTP and GTP (purine ribonucleoside triphosphate) serve as cofactors in RecA-mediated reactions (17,22,23). ITP, CTP, dCTP and GTP are hydrolyzed with a nearly normal Vmax, but do not support DNA strand exchange. Reactions with dATP increase hydrolytic rates 20% over ATP (22,24,25).

Inhibitors: ADP, ATP[Y5], <25 mM NaCl to prevent destabilization of RecA triplexes (26). Kf: For ATP[Y5], 0.6 µM (27).

Temperature Stability: RecA Protein is stable at temperatures of 25–45°C as demonstrated by a linear Arrhenius plot (28).

Inactivation: 65°C for 15 minutes (29).

Genetic Locus: E. coli recA.

Promega Product Information

Source: Purified from an E. coli strain expressing a recombinant clone.

Molecular Weight: 37,842 daltons; 352 amino acids.

Typical Working Conditions: RecA Protein reaction conditions vary with the application (see references 7–15), but in general there should be one RecA Protein for every three nucleotides in the ssDNA used for strand invasion protocols (e.g., 160ng oligonucleotide per 6.25µg RecA Protein [26]).

Storage Conditions: Store at –20°C. RecA Protein is supplied in storage buffer containing 20mM Tris-HCl (pH 7.5 at 25°C), 0.1mM EDTA, 1mM DTT and 50% glycerol.

Concentration: RecA concentration is determined by A280 using an extinction coefficient of 0.516 at 1mg/ml (30).

Purity: The purity is ≥95% as judged by SDS-polyacrylamide gel electrophoresis with Coomassie® blue staining.

Molecular Weight: 37,842 daltons; 352 amino acids.

Typical Working Conditions: RecA Protein reaction conditions vary with the application (see references 7–15), but in general there should be one RecA Protein for every three nucleotides in the ssDNA used for strand invasion protocols (e.g., 160ng oligonucleotide per 6.25µg RecA Protein [26]).

Storage Conditions: Store at –20°C. RecA Protein is supplied in storage buffer containing 20mM Tris-HCl (pH 7.5 at 25°C), 0.1mM EDTA, 1mM DTT and 50% glycerol.

Concentration: RecA concentration is determined by A280 using an extinction coefficient of 0.516 at 1mg/ml (30).

Purity: The purity is ≥95% as judged by SDS-polyacrylamide gel electrophoresis with Coomassie® blue staining.
Activity Assays

ATPase Activity: RecA Protein is a ssDNA-dependent ATPase. The rate of ATPase activity is measured as turnover number or apparent Kcat. One monomer of RecA protein binds per 3 nucleotides of ssDNA to form an active RecA:ssDNA complex. ATPase activity is determined by monitoring conversion of NADH to NAD in a coupled reaction. The rate of ATPase activity is calculated from the absorbance change (31). An apparent Kcat per minute is calculated from the moles of ATP to ADP per mole of activated RecA:ssDNA.

DNA Strand Exchange: Strand exchange is the ability of RecA Protein to exchange closed circular ssDNA with one strand of linearized dsDNA. The resulting products are open circular dsDNA and linear ssDNA. After 60 min of incubation with 15µg of RecA at 37°C ≥50% of the linear dsDNA is converted to open circular DNA (28).

Contaminant Assays

Endonuclease Assay: To test for endonuclease activity, 1µg of Type I supercoiled plasmid DNA, lambda DNA and pgEM® marker DNA(c) is incubated with 15µg of RecA Protein in restriction enzyme buffer A for 16 hours at 37°C. Following incubation the DNA is visualized on an ethidium bromide-stained agarose gel to verify the absence of visible nicking or cutting.

Exonuclease Assay: To test for DNase activity, 50ng of radiolabeled DNA is incubated with 5µg of RecA Protein in restriction enzyme buffer A for four hours at 37°C, and the release of radiolabeled nucleotides is monitored by scintillation counting of TCA-soluble material. Minimum passing specification is <1% release of substrate.

Table 2. Materials Needed for RecA Protein Protection and Cleavage Protocols.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligonucleotide</td>
<td>Prepared by user to be specific for the intended protected site. Diluted to 160ng/ml.</td>
</tr>
<tr>
<td>RecA</td>
<td>1-3mg/ml</td>
</tr>
<tr>
<td>SAM (1.6mM S-adenosyl methionine)</td>
<td>Prepared immediately before use from a 32mM stock by dilution with ice-cold 5mM sulfuric acid.</td>
</tr>
<tr>
<td>ATP[γS]</td>
<td>Aliquots of a 10mM solution (in water) are stored at 70°C.</td>
</tr>
<tr>
<td>Restriction Enzyme Buffer H (Promega)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Troubleshooting RecA Protein Cleavage and Protection Protocols.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RecA cleavage or protection: extra bands on a gel that look like restriction digest partials.</td>
<td>Nonspecific protection. RecA in excess of oligonucleotide. RecA favors binding to single-stranded DNA; however, it does have a low affinity for double-stranded DNA.</td>
<td>Try a number of different concentrations of oligonucleotide, holding all other reaction components constant. Add 160ng of oligo(dT) immediately after the addition of ATP[γS], which has been described to improve the process (11).</td>
</tr>
<tr>
<td>RecA cleavage: uncut DNA.</td>
<td>Incomplete protection of the targeted site.</td>
<td>Increase the concentration of RecA and oligonucleotide. Change the reaction buffer to decrease nonspecific cleavage by raising the pH from 7.5 to 7.85 (32). Adjust the oligonucleotide size and/or sequence to target the oligonucleotide more specifically.</td>
</tr>
<tr>
<td>RecA protection: unexpected products that are comigrating with the products of an unprotected restriction digest.</td>
<td>Low transformation efficiencies of RecA cleavage products. Methylation is incompatible with restriction systems of the host.</td>
<td>Check host genotype for incompatible methylation-induced restriction system. Change host if necessary.</td>
</tr>
</tbody>
</table>

Figure 8. ATPase activity as a function of temperature. ssDNA-dependent ATPase activity was determined spectrophotometrically by monitoring conversion of NADH to NAD in a coupled reaction (31). RecA Protein was slightly in excess of one monomer per 3 bases of M13mp18 ssDNA. Moles of ATP converted to ADP were calculated from the absorbance change of NADH, and the Kcat was calculated by dividing the rate of ATP conversion by the amount of activated RecA:ssDNA complex. Since RecA is in excess of ssDNA, the amount of activated RecA:ssDNA complex is equal to the known amount of ssDNA sites in the reaction (31). As seen in the above figure, there is a strong temperature-dependence of the ATPase activity. The measured kcat for 36°C, 37°C, and 38°C was 24, 31, and 34 min⁻¹, respectively.

References (continued)

RecA Protein Cleavage and Protection Reaction Tips

- **RecA concentration.** 6.25 mg RecA in a 10 ml reaction works well. To maximize the specificity and efficiency of RecA protections, it may be necessary to manipulate the oligonucleotide:RecA ratio; we recommend holding the RecA concentration constant and titrating the oligonucleotide.

- **Oligonucleotide concentration.** The molar stoichiometry (moles of nucleotides to moles of RecA protein) of binding of the oligonucleotide to RecA is 3:1. This ratio is independent of oligonucleotide size and corresponds to 160 ng of oligonucleotide per 6.25 µg RecA. We recommend using a titration series of 40–280 ng in 40 ng increments to determine the optimal concentration of oligonucleotide to use with the RecA. If nonspecific protection is a problem, then 160 ng of oligo(dT) can be added to the reaction after the addition of ATP[γS].

- **Oligonucleotide design.** An oligonucleotide of 30–36 bases in length is recommended for both RecA cleavage and RecA protection in solution. Locate the protected site in the middle of the oligonucleotide. M. Koob recommends oligonucleotides designed with the restriction site ten nucleotides from the 3′-end (personal communication).

- **Buffer.** The buffers shown in Figure 9 and Table 2 work well with either EcoRI methylase or restriction enzyme. If restriction enzymes or methylases other than these are used, it may be necessary to adjust the salt concentration to improve the activity of the enzyme. Acetate salts appear to be less destabilizing to the RecA triplex than chloride salts, and therefore we suggest using potassium acetate rather than potassium or sodium chloride. While Promega’s MULTI-CORE™ Buffer contains potassium acetate, we do not recommend its use for these applications.

- **Cloning the products of RecA cleavage.** Because the products of a RecA cleavage reaction are methylated, low transformation frequencies may arise from incompatibilities with the host’s restriction/modification system. This will not be a problem when EcoRI methylase is used to protect the site, but could be with other restriction enzyme/methylase pairs. If transformation efficiencies are low, compare the genotype of your host to the known methylation-induced restriction systems to determine if this is the cause.

RecA Protein Cleavage and Protection Protocols

1. **Formation of Triple Helix**
 1. Add: 1 µl 160 ng/µl oligonucleotide
 2. 6.25 µg RecA
 3. Bring volume to 9 µl with water.
 4. After 30 seconds, add 1 µl of 10 mM ATP[γS].
 5. Incubate for 10 minutes at 37°C.
 6. Add: 1 µg substrate DNA
 2.7 µl buffer B
 2.7 µl 1 mg/ml BSA
 Bring volume to 27 µl with water.
 7. Incubate for 30 minutes at 37°C.

RecA Protection

1. **Restriction**
 1. Add: 10 µl water
 2. 5 µl 80 mM magnesium acetate
 3. 5 µl 250 mM potassium acetate
 4. 20–40 u EcoRI
 5. Incubate at 37°C for 30 minutes.

RecA Cleavage

1. **Methylation**
 1. Add: 1.5 µl 80 mM magnesium acetate
 2. 1.5 µl 1.6 mM SAM
 3. 100 u EcoRI Methylase
 4. Incubate for 30 minutes at 37°C.

Heat Denaturation

1. Heat sample to 65°C for 15 minutes.
2. Centrifuge the sample at 14,000 x g for 5 minutes. Transfer the supernatant to a new tube.

Restriction

1. Add: 10 µl water
 2. 5 µl RE 10X buffer H
 3. 20–40 u EcoRI
 4. Incubate for 30 minutes at 37°C.

Figure 9. RecA cleavage and protection protocols.
AgarACE® Enzyme

Description

AgarACE® Enzyme (Cat.# M1741, M1743) is a novel, patented agarolytic enzyme produced and extensively tested for the harvest of DNA and RNA from agarose gels (1,2). The harvested polynucleotide is suitable for a variety of downstream applications (page 29).

Applications

• Harvest of DNA and RNA from low-melting agarose gels.
• Harvest of DNA from regular-melting agarose gels (3).

Enzyme Properties

Requirements: Completely melted agarose, thorough mixing after enzyme addition, incubation temperature 42–47°C.

Optimal Substrate: Any agar or agarose, typically 1% (w/v) in electrophoresis buffers (TAE/TBE), melted completely.

Typical Working Concentration: One unit per 200mg of 1% gel.

Optimal pH: Approximately 6.75; however, AgarACE® Enzyme exhibits ≥80% activity at pH 6.0–8.3. The unit activity is determined at pH 8.3, where the enzyme is least active, so under all conditions that researchers are likely to use, the activity will be at or greater than the expected activity (Figure 15).

Inhibitors: 0.3% SDS inhibits ≥35% in 15 minutes, urea, formaldehyde and guanidine-HCl at ≥0.2M inhibit completely. Note: The latter 3 inhibitors can be soaked out of the gel prior to digestion (Table 5, Figure 16).

Half-Life: Approximately 15 minutes at 57°C, about 10 minutes at 60°C and >6 minutes at 65°C.

Temperature Stability: No significant loss of activity after approximately 90 days at 4°C or 3 days at 20–23°C.

Inactivation: 70°C for 15 minutes.

Promega Product Information

Source: Flavobacterium strain NR19.

Molecular Weight: 42kDa.

Typical Working Conditions: One unit per 200mg melted 1% agarose in 1X TAE (pH 8.3) at 42–47°C.

Storage Conditions: Store at −20°C. AgarACE® Enzyme is supplied in storage buffer containing 20mM Tris (pH 7.3).

Unit Definition: One unit is defined as the amount of AgarACE® Enzyme required to completely degrade 200µl of 1% SeaPlaque® agarose in 1X TBE (pH 8.3) in 15 minutes at 42–47°C (Figure 11). AgarACE® Enzyme degradation of agarose is measured by monitoring sugar release (4).

Purity: >90% as determined by visual inspection of a Coomassie® blue-stained SDS-polyacrylamide gel.

Activity Assays

Function Assay (DNA Recovery): >95% recovery from 2µg of a DNA ladder ranging from 0.4 to 3.0kb in length.

Contaminant Assays

Endonuclease Assay: To test for endonuclease activity, 1µg of supercoiled plasmid DNA is incubated with 5 units of AgarACE® Enzyme for 4 hours at 42°C. Following incubation, the supercoiled DNA is visualized on an ethidium bromide-stained agarose gel. There must be no visible nicking or cutting of the DNA.

Exonuclease Assay: To test for DNase and RNase activity, 50ng of radiolabeled DNA or RNA is incubated with 5 units of AgarACE® Enzyme for 4 hours at 42°C in 1X TAE buffer (pH 8.3) containing 6.6mM Mg2+. The release of radiolabeled nucleotides is monitored by scintillation counting of TCA-soluble material. Minimum passing specification is <1% release for DNase and <3% release for RNase.

Single-Stranded DNase: 5 units of AgarACE® Enzyme are tested with 50ng denatured substrate DNA in 1X TAE buffer with 6.6mM Mg2+ for 4 hours at 42°C. Minimum passing specification is <5% release.

Blue/White Cloning: pGEM®-3Zf(+) Vector(d) is digested with Hinc II or EcoRI, separated on a 1% gel and the agarose digested using AgarACE® Enzyme. The harvested DNA is then religated and transformed into JM109 cells, which are then plated on X-Gal/IPTG/Amp plates. A minimum of 400 colonies is counted. White colonies result from transformation with ligated plasmids with damaged ends. These white colonies represent the number of false positives expected in a typical cloning experiment. Enzymes that generate overhangs, such as EcoRI I, must produce fewer than 2% white colonies, and blunt-cutting enzymes, such as Hinc II, must produce fewer than 5% white colonies (5). Transformation efficiency must be ≥1 x 10^5 cfu/µg DNA.

Additional Quality Control Assays

T-Vector Cloning: At least 100 colonies must be obtained, ≥60% of which are white, when JM109 cells are transformed with the pGEM®-T Vector(d) containing an insert purified using AgarACE® Enzyme. 80% of the white colonies generated must contain inserts.

Labeling Efficiency: Using the Prime-a-Gene® Labeling System, a labeling efficiency of ≥1 x 10^6 cpn/µg DNA must be obtained.

References

DNA Recovery Tips

- TBE can be used instead of TAE for the gel running buffer. However, fewer downstream applications can be performed directly from a TBE gel digest. (See Table 8 and #TB228 for more information.)
- To visualize the DNA, ethidium bromide may be added to the gel directly (0.5µg/ml) or the gel can be stained after electrophoresis. To stain the gel after electrophoresis, soak in a solution of 0.5µg/ml ethidium bromide for 30 minutes at room temperature. Ethidium bromide added to the gel is lost during electrophoresis. As such, small fragments may not be visible. This can be avoided by adding ethidium bromide to the gel running buffer or staining the gel after electrophoresis. Caution: Ethidium bromide is a carcinogen. Wear gloves and use appropriate precautions when working with solutions and gels that contain ethidium bromide.
- It is important that the gel slice is completely melted. It will take approximately 10–15 minutes for 200µl of 1% LMP agarose to melt completely in a 1.5ml polypropylene microcentrifuge tube. If the gel slice is over 300mg it should be broken up using a spatula or razor blade prior to melting. Unless the sample contains large (>10kb) shearable DNA, monitor melting by gently pipetting the sample. If the agarose is completely melted, it should pipet like water.
- Use of a thermal cycler is convenient for isolation of DNA from many samples. Simply load the samples and program the melting and digestion temperatures into the unit. Note: Add the AgarACE® Enzyme after the temperature has been reduced to 42–47°C to avoid denaturation of the enzyme.
- AgarACE® Enzyme performs equally well in TAE (pH 7.3, 7.8 or 8.3) and TBE (pH 8.3) and performs adequately in 20mM phosphate and MOPS buffers across the pH range of 6.5–8.5. Note that the buffer selection may affect subsequent applications in which the isolated nucleic acid will be used (Table 8; #TB228).
- SDS (>0.3% w/v) and formaldehyde will inactivate AgarACE® Enzyme. (See Table 5 and Technical Bulletin #TB228 for more information.)
- In some cases, components of the running buffer may interfere with downstream applications. In many cases, these effects can be reduced by soaking the gel slice in water before digestion with AgarACE® Enzyme (Figure 16).

DNA Recovery Protocol

Prepare a 1% LMP agarose gel in TAE (or TBE).

Load samples and run in TAE (or TBE).

Wearing gloves, cut out the desired band from the gel.

<5 minutes

Transfer the gel slice to a microcentrifuge tube using a microspatula. Determine the weight of gel slice.

<5 minutes

Completely melt the gel slice at 65–75°C. Spin for 1–2 seconds in a microcentrifuge.

10 minutes

Transfer the tube to a 42–47°C heating block or water bath and add 1 unit of AgarACE® Enzyme/200µl (200mg) of melted gel. Mix gently and completely, and incubate for 15 minutes.

The activity of AgarACE® Enzyme is linear with respect to agarose concentration. That is, 1 unit of AgarACE® Enzyme will digest 200µl of 1% agarose in 15 minutes, whereas 2 units of enzyme are required to digest an equivalent volume of 2% agarose in 15 minutes. Likewise, 200µl of 1% agarose will be completely digested in 1 hour using 0.25 units of AgarACE® Enzyme (Table 4 and Figure 13). Check for complete digestion by gently pipetting the reaction. The reaction should have the viscosity of water.

The DNA can be used in many applications without further purification. If desired, the DNA can also be ethanol precipitated before use. Some downstream applications require ethanol precipitation of the DNA. (Table 8). Promega Technical Bulletin #TB228 contains an application compatibility guide for determination of what further purification, if any, is needed.

For a more detailed protocol on the use of AgarACE® Enzyme refer to Promega’s Protocols and Applications Guide, Third Edition (pp. 84–86). Further information on downstream applications using AgarACE® Enzyme-purified DNA can be found in Promega Notes 53, 54 and 61, Table 8 and Figures 17–20.

Figure 10. DNA recovery protocol.
Table 4. Digestion Time Versus Units of Enzyme.

<table>
<thead>
<tr>
<th>Digestion Time (at 42–47°C, unless noted)</th>
<th>Units of AgarACE® Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 minutes</td>
<td>1.0</td>
</tr>
<tr>
<td>1 hour</td>
<td>0.25</td>
</tr>
<tr>
<td>4 hours</td>
<td>0.1</td>
</tr>
<tr>
<td>16 hours (overnight)*</td>
<td>0.025</td>
</tr>
</tbody>
</table>

*Perform overnight digestions at 37°C in an oven.

AgarACE® Enzyme Activity Assays:

Agarase activity assays are generally based on the fact that hydrolysis of the agarase polymer liberates free reducing sugar, which is then measured colorimetrically. Two types of assays are commonly used: one in which the amount of enzyme is varied and the maximal sugar release attained is measured (Figure 11). The other type of assay is a fixed enzyme/fixed time format, where the amount of sugar released is compared to that obtained for a known standard condition (Figures 12–14).

Table 5. Effects of Buffer Additives on AgarACE® Enzyme (4).

<table>
<thead>
<tr>
<th>Additive</th>
<th>Effect on AgarACE® Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethidium Bromide (0.5–5mg/ml)</td>
<td>None detected</td>
</tr>
<tr>
<td>Glycerol (0–50%)</td>
<td>None detected</td>
</tr>
<tr>
<td>DTT (0–10mM)</td>
<td>None detected</td>
</tr>
<tr>
<td>NaCl (0–200mM)</td>
<td>None detected</td>
</tr>
<tr>
<td>NaCl (200–500mM)</td>
<td>Causes variation in the digestion rate, not recommended</td>
</tr>
<tr>
<td>EDTA (0–10mM)</td>
<td>None detected</td>
</tr>
<tr>
<td>SDS (<0.1% w/v)</td>
<td>None detected</td>
</tr>
<tr>
<td>SDS (>0.3% w/v)</td>
<td>Inactivates enzyme</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Inactivates enzyme</td>
</tr>
</tbody>
</table>

Figure 11. Determination of AgarACE® Enzyme activity. Melted agarose is incubated with a titration of enzyme. The point at which the maximal amount of sugar is released through agarose hydrolysis is measured. The same amount of enzyme is required for either TAE or TBE gels.

Figure 12. Temperature profile for AgarACE® Enzyme. The activity of AgarACE® Enzyme, added to a reaction at the indicated temperatures and allowed to act for 15 minutes, is shown. Note that although the temperature profile is fairly broad, 100% agarose hydrolysis (required for good DNA recovery) is only obtained at 42–47°C.

Figure 13. AgarACE® Enzyme performance at longer digestion times. In this experiment, various amounts of AgarACE® Enzyme were tested at incubation times of 15 minutes, 1 hour, and 4 hours. The graph shows that the enzyme titration maximizes at nearly the same value of enzyme x time for all three incubation times. This means that if the use of less enzyme is desired, the incubation time can be increased proportionally (up to a 10-fold enzyme dilution/4 hour incubation) (see Table 4 for precise values, 3).

Figure 14. AgarACE® Enzyme survival at various temperatures. AgarACE® Enzyme is relatively stable for a few minutes at temperatures of 65–70°C, which allows the hydrolysis protocol to be performed without a lower temperature equilibration step. By the time a sample is taken from a block and the AgarACE® Enzyme is added, the temperature is usually at 60–65°C, and is dropping (4).
Ethanol Precipitation of DNA

1. Hydrolyze the agarose completely as described in the standard procedure.
2. For sodium acetate precipitation, add 0.1 volume of 3M NaOAc (pH 5.2), mix, then add 2 volumes of room temperature 95% ethanol (2X the volume after NaOAc addition). For ammonium acetate precipitation, add 0.5 volume of 7.5M NH₄OAc, mix, then add 2.5 volumes of room temperature 95% ethanol (2.5X the volume after NH₄OAc addition).
3. Allow the mixture to stand 1–2 hours (2 hours for small amounts of DNA in NH₄OAc) at room temperature (do not incubate in the cold), then centrifuge for 15 minutes at room temperature in a microcentrifuge at maximum speed.
4. Immediately decant the supernatant, orienting the tube so that the pellet is on the upper side of the tube. Centrifuge the tube for 1–2 seconds in a microcentrifuge to bring down residual supernatant. Remove the remaining supernatant.
5. Wash the pellet by adding 200–500µl of cold (<10°C) 70% ethanol, agitating briefly, centrifuging for 5 minutes and decanting as above.
6. Dry the pellet in a Speed Vac® instrument if desired, then reconstitute the pellet in an appropriate volume of water or buffer. Allow at least 15 minutes for the nucleic acid to redissolve.

Table 6. Troubleshooting AgarACE® Enzyme.

<table>
<thead>
<tr>
<th>Symptom:</th>
<th>Large quantities of white or translucent precipitate in tube when ethanol precipitated; pellet resuspends poorly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible Causes:</td>
<td>Incomplete digestion of agarose prior to precipitation; possible loss of enzyme activity.</td>
</tr>
<tr>
<td>Comments:</td>
<td>Resuspend the sample, remelt residual agarose and retreat with AgarACE® Enzyme.</td>
</tr>
</tbody>
</table>

Table 7. DNA Recovery from AgarACE® Enzyme-Hydrolyzed Agarose after Ethanol Precipitation (6).

<table>
<thead>
<tr>
<th>DNA Size (bp)</th>
<th>Sodium Acetate, 1 hour at 25°C</th>
<th>Ammonium Acetate, 2 hours at 25°C</th>
<th>Ammonium Acetate, 1 hour at 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>296</td>
<td>122 ± 4</td>
<td>105 ± 2</td>
<td>39 ± 3</td>
</tr>
<tr>
<td>344</td>
<td>115 ± 4</td>
<td>95 ± 3</td>
<td>27 ± 2</td>
</tr>
<tr>
<td>395</td>
<td>nd</td>
<td>100 ± 1</td>
<td>54 ± 2</td>
</tr>
<tr>
<td>500</td>
<td>104 ± 4</td>
<td>99 ± 1</td>
<td>74 ± 2</td>
</tr>
<tr>
<td>1,000</td>
<td>115 ± 4</td>
<td>96 ± 1</td>
<td>65 ± 2</td>
</tr>
<tr>
<td>1,600</td>
<td>107 ± 3</td>
<td>94 ± 1</td>
<td>80 ± 4</td>
</tr>
<tr>
<td>2,000</td>
<td>94 ± 3</td>
<td>83 ± 1</td>
<td>62 ± 3</td>
</tr>
<tr>
<td>3,000</td>
<td>106 ± 1</td>
<td>77 ± 3</td>
<td>78 ± 3</td>
</tr>
</tbody>
</table>

Recovery, using AgarACE® Enzyme, of 100ng total DNA from a DNA ladder, as quantified by image analysis of a SYBR® Green I-stained gel. Starting amounts of DNA for the smaller bands (296bp, 344bp) were approximately 2–4ng and apparent recoveries >100% were due to gel contributions. Results demonstrate DNA recoveries at or near 100% for sodium and ammonium acetate precipitations after 1 and 2 hours, respectively, but lower recoveries with ammonium acetate for 1 hour.
Compatibility of AgarACE® Enzyme with Downstream Applications

<table>
<thead>
<tr>
<th>Application (running buffer)</th>
<th>Can Be Used Directly in Application?</th>
<th>Required Pre-Treatment</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligation</td>
<td>Yes</td>
<td>None</td>
<td>TBE lowers transformation efficiency (6).</td>
</tr>
<tr>
<td>Cloning of DNA Fragments</td>
<td>Yes</td>
<td>None</td>
<td>TBE can greatly lower transformation efficiency (Table 10, 6).</td>
</tr>
<tr>
<td>Transformation of E. coli</td>
<td>No</td>
<td>Add ligase buffer</td>
<td>For TBE, the DNA volume is important. Tables 9 and 10 and Figure 20 show that addition of ligase buffer is important.</td>
</tr>
<tr>
<td>Electroporation of E. coli</td>
<td>No</td>
<td>Ethanol precipitation</td>
<td>Slightly fewer colonies obtained.</td>
</tr>
<tr>
<td>pGEM®-T Vector Cloning</td>
<td>Yes</td>
<td>Soak gel in water</td>
<td>The number of colonies is somewhat variable.</td>
</tr>
<tr>
<td>Labeling with T4 PNK</td>
<td>Yes</td>
<td>Add 2X kinase (optional)</td>
<td>Soaking the gel in water can improve labeling (Figure 18).</td>
</tr>
<tr>
<td>Dephosphorylation (AP)</td>
<td>Yes</td>
<td>None</td>
<td>Borate ions inhibit CIAP (Figure 17).</td>
</tr>
<tr>
<td>Digestion with Restriction Enzymes</td>
<td>Yes, but more enzyme</td>
<td>Yes, in certain cases</td>
<td>Important! Varies with restriction enzyme used (Table 11).</td>
</tr>
<tr>
<td>Prime-a-Gene® Labeling</td>
<td>Yes</td>
<td>None</td>
<td>See reference 7.</td>
</tr>
<tr>
<td>Nick Translation</td>
<td>Yes</td>
<td>None</td>
<td>See reference 7.</td>
</tr>
<tr>
<td>fmol® DNA Sequencing</td>
<td>Yes</td>
<td>Ethanol precipitation</td>
<td>See Figure 19 and reference 6.</td>
</tr>
<tr>
<td>PCR</td>
<td>Yes</td>
<td>Ethanol precipitation</td>
<td>See Figure 19 and reference 6.</td>
</tr>
</tbody>
</table>

Labeling with either Prime-a-Gene® Labeling System or Nick Translation System

Use AgarACE® Enzyme-isolated DNA directly, or if it is necessary, concentrate the DNA by performing an ethanol precipitation. Cool DNA solution to room temperature before adding labeling reagents (7).

fmol® DNA Sequencing System

Use AgarACE® Enzyme-isolated DNA directly if TAE is used as the running buffer, or if TBE is the buffer or it is necessary to concentrate the DNA, perform an ethanol precipitation. In some cases “hard stops” have been observed at various locations when the DNA is not first ethanol precipitated (6).

Transformation of Cells by Electroporation

Before using the DNA for electroporation, ethanol precipitate it using sodium acetate, and wash the DNA pellet at least once with cold (<10°C) 70% ethanol to remove traces of the sodium acetate. The total number of colonies observed will be approximately 2–3-fold lower than observed for DNA in water.
Compatibility of AgarACE® Enzyme with Downstream Applications (continued).

Recommendation: Dephosphorylation with Calf Intestinal Alkaline Phosphatase

Use isolated DNA directly if TAE is used as the running buffer. If it is necessary to concentrate the DNA or if TBE is used, perform an ethanol precipitation. If ethanol precipitation is not done for samples from TBE, the borate in the TBE will completely inhibit the CIAP.

Figure 17. Performance of AgarACE® Enzyme-harvested DNA in dephosphorylation reactions with calf intestinal alkaline phosphatase (CIAP). For TAE gels (Panel A), the DNA is efficiently dephosphorylated relative to control, but the borate ion in TBE gels (Panel B) completely inhibits the CIAP enzyme.

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Control</th>
<th>TAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>5.5</td>
</tr>
<tr>
<td>10</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 18. Kinase reactions with AgarACE® Enzyme-harvested DNA. The figure demonstrates that while performing a kinase reaction with control DNA in water, using twice the normal amount of kinase does not increase labeling. However, it does increase labeling of AgarACE® Enzyme-harvested DNA (from TBE or TAE gels) up to control levels. Alternatively, soaking the gel to remove some of the buffer has a similar benefit.

Recommendation: 5’ End-Labeling with T4 Polynucleotide Kinase

Perform either an ethanol precipitation (using sodium acetate; ammonium ion inhibits kinase) prior to labeling or double the amount of kinase added to obtain the highest specific activity possible. Alternatively, soak the gel in water (Figure 16) prior to digesting with AgarACE® Enzyme to get DNA that can be labeled to at least one-half the specific activity of DNA in water. DNA harvested from unsoaked gels and not ethanol precipitated will label to at least one-fourth to one-third the specific activity of DNA in water.
Figure 19. Performance of AgarACE® Enzyme-harvested DNA in PCR. Panel A demonstrates that for template DNA harvested from a TAE-buffered gel using AgarACE® Enzyme, the yield of PCR product (measured in a fluorescent dye assay) increased linearly with increasing numbers of cycles. Panel B demonstrates that template DNA harvested from TAE gels using AgarACE® Enzyme resulted in PCR product yields similar to those observed with control DNA resuspended in water. Template DNA harvested from TBE gels needed to be ethanol-precipitated to perform well in PCR.

Recommendation: Transformation of E. coli.

We recommend using DNA harvested from TAE, setting up a normal ligation and transforming cells with ≤5µl DNA per 100µl competent cells. If TBE is used, run the gel in 0.5X buffer or soak the gel in water prior to digestion, and then use ≤8µl of DNA per 100µl cells. In all cases, for high colony yields ethanol precipitation of DNA will remove the buffer and concentrate the DNA.

Figure 20. Transformation efficiency is greatly dependent on the pH of the gel-running buffer. When DNA is used in buffer at pH 8.3 (TAE or TBE) low transformation efficiency results, but when the pH is adjusted to 7.2 the transformation efficiency increases dramatically. Addition of ligase buffer decreases the interference caused by high pH electrophoresis buffers, provided the volume used in a 100µl transformation is minimal.

Recommendation: PCR from Isolated Fragment

AgarACE® Enzyme-isolated DNA may be used directly if TAE is used as the running buffer. If TBE is used or if it is necessary to concentrate the DNA, an ethanol precipitation should be performed. TBE results in 2–3-fold lower PCR yields unless DNA is first ethanol-precipitated.
Table 9. Transformation Efficiency of DNA Isolated from Agarose Gels using AgarACE® Enzyme (6).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>cfu/µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>water control</td>
<td>6.4 x 10⁷</td>
</tr>
<tr>
<td>TAE (pH 8.3)</td>
<td>7.5 x 10⁷</td>
</tr>
<tr>
<td>TAE (pH 8.3) + AgarACE® Enzyme</td>
<td>8.1 x 10⁷</td>
</tr>
<tr>
<td>TBE (pH 8.3)</td>
<td>2.2 x 10⁷</td>
</tr>
<tr>
<td>TBE (pH 8.3) + AgarACE® Enzyme</td>
<td>2.5 x 10⁷</td>
</tr>
<tr>
<td>TBE (pH 8.3) + agarose + AgarACE® Enzyme</td>
<td>4.6 x 10⁷</td>
</tr>
<tr>
<td>TAE (pH 7.2)</td>
<td>6.5 x 10⁷</td>
</tr>
<tr>
<td>TAE (pH 7.2) + AgarACE® Enzyme</td>
<td>6.8 x 10⁷</td>
</tr>
<tr>
<td>TAE (pH 7.2) + agarose + AgarACE® Enzyme</td>
<td>7.7 x 10⁷</td>
</tr>
</tbody>
</table>

Table 10. Luciferase Activity and Transformation Efficiency of pBEST-luc™ Vector DNA After Ligation (6).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>µl DNA Used in Ligation</th>
<th>cfu/µg</th>
<th>% Colonies Expressing Luciferase</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAE (pH 8.3)</td>
<td>3µl</td>
<td>1 x 10⁶</td>
<td>97%</td>
</tr>
<tr>
<td>TAE (pH 8.3)</td>
<td>8µl</td>
<td>3.1 x 10⁴</td>
<td>95%</td>
</tr>
<tr>
<td>no ligase control</td>
<td>8µl</td>
<td><limits</td>
<td>—</td>
</tr>
<tr>
<td>TBE (pH 8.3), water-soaked</td>
<td>3µl</td>
<td>1 x 10⁵</td>
<td>100%</td>
</tr>
<tr>
<td>TBE (pH 8.3), water-soaked</td>
<td>8µl</td>
<td>7.4 x 10³</td>
<td>98%</td>
</tr>
<tr>
<td>no ligase control</td>
<td>8µl</td>
<td><limits</td>
<td>—</td>
</tr>
<tr>
<td>TBE (pH 8.3)</td>
<td>3µl</td>
<td><limits</td>
<td>—</td>
</tr>
<tr>
<td>TBE (pH 8.3)</td>
<td>8µl</td>
<td><limits</td>
<td>—</td>
</tr>
<tr>
<td>no ligase control</td>
<td>8µl</td>
<td><limits</td>
<td>—</td>
</tr>
</tbody>
</table>

The pBEST-luc™ Vector was digested with BamHI and ClaI and 2µg was loaded onto a 1% SeaPlaque® GTG® agarose cast in 1X gel buffer. pGEM®-3Zf(+) Vector DNA was treated in one of three ways: 1) suspended in 1X gel buffer; 2) diluted in 1X gel buffer and AgarACE® Enzyme (1u/200µl) added; or 3) embedded in 1% SeaPlaque® GTG® agarose cast in 1X gel buffer, melted and digested with AgarACE® Enzyme as described in the DNA Recovery Protocol (Figure 10). Pseudoligations contained 5ng of plasmid in 5µl of one of the above mixtures, 1µl of 10X Ligase Buffer and 4µl water. In each case, 2µl of the pGEM®-3Zf(+) Vector DNA was transformed into low efficiency competent JM109 Cells and plated on LB/Amp/IPTG/X-Gal plates. Colonies were counted and cfu/µg were calculated.

Table 11. Effect of AgarACE® Digestion on Restriction Enzyme Activity.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Units Required if Isolated from 1X TBE*</th>
<th>Units Required if Isolated from 1X TAE*</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc I</td>
<td>3.5X</td>
<td>7X</td>
<td>Purify with Wizard® PCR Preps**</td>
</tr>
<tr>
<td>Apa I</td>
<td>3X</td>
<td>3X</td>
<td></td>
</tr>
<tr>
<td>BamHI</td>
<td>4X</td>
<td>4X</td>
<td></td>
</tr>
<tr>
<td>EcoR I</td>
<td>6X</td>
<td>6X</td>
<td>Purify with Wizard® PCR Preps**</td>
</tr>
<tr>
<td>Hind III</td>
<td>8.5X</td>
<td>8.5X</td>
<td>Purify with Wizard® PCR Preps**</td>
</tr>
<tr>
<td>Kpn I</td>
<td>4X</td>
<td>4X</td>
<td></td>
</tr>
<tr>
<td>Not I</td>
<td>3.5X</td>
<td>2X</td>
<td>Purify with Wizard® PCR Preps**</td>
</tr>
<tr>
<td>Pst I</td>
<td>7X</td>
<td>17X</td>
<td></td>
</tr>
<tr>
<td>Sac I</td>
<td>1X</td>
<td>1.5X</td>
<td></td>
</tr>
<tr>
<td>Sal I</td>
<td>1.5X</td>
<td>2X</td>
<td></td>
</tr>
<tr>
<td>Sph I</td>
<td>1X</td>
<td>1X</td>
<td></td>
</tr>
</tbody>
</table>

*The amount of restriction enzyme required (X-fold) to digest the DNA relative to a control digestion containing DNA in water. The DNA was isolated from Promega LMP® (Cat.# V2831, V3841), Preparative Grade Agarose; other agaroses may give different results.

**The use of TBE buffer is not recommended with the Wizard® PCR Preps DNA Purification System.
Technical Appendix

Composition of Solutions

Note: Solution compositions for the Cloning Enzyme 10X reaction buffers are listed in Table 15.

Antibiotic Stock Solutions

- Ampicillin: 100mg/ml in deionized water (filter-sterilized).
- Tetracycline: 10mg/ml in 80% ethanol.
- Kanamycin: 30mg/ml kanamycin sulfate in deionized water (filter-sterilized).
- Chloramphenicol: 20mg/ml in 80% ethanol.
 Store at ~20°C. Note: Cell growth in liquid culture is inhibited by tetracycline concentrations greater than 10mg/ml.

Cell Lysis Solution

0.2N NaOH, 1% SDS in deionized water. Prepare fresh for each use.

Cell Resuspension Solution

- 25mM Tris-HCl (pH 8.0)
- 10mM EDTA
- 50mM glucose

IPTG Stock Solution (0.1M)

1.2g isopropyl β-D-thiogalactopyranoside (IPTG) (Cat.# V3951)
Add deionized water to 50ml final volume. Filter-sterilize (0.2µm) and store at 4°C.

LB Medium

10g Bacto®-tryptone
5g Bacto®-yeast extract
5g NaCl
Add deionized water to approximately 1L. Adjust pH to 7.5 with 10N NaOH and autoclave.

LB/ Antibiotic Plates (1L)

Add 15g of agar to 1 liter of LB medium and autoclave. Allow the medium to cool to 55°C before adding antibiotic to the specified final concentration (ampicillin: 100µg/ml; tetracycline: 12.5µg/ml; kanamycin: 30µg/ml; chloramphenicol: 20µg/ml). Pour 30–35ml of medium into 85mm petri dishes. If necessary, flame the surface of the medium with a Bunsen burner to eliminate bubbles. Let the agar harden overnight. Store at 4°C for <1 month. Tetracycline is light-sensitive; LB/tetracycline plates should be covered with foil.

M-9 Plates

6g Na₂HPO₄
3g KH₂PO₄
0.5g NaCl
1g NH₄Cl
15g agar
Add deionized water to approximately 1L. Adjust pH to 7.4 with 10N NaOH. Autoclave. Cool to 50°C. Then add:
- 2.0ml 1M MgSO₄
- 0.1ml 1M CaCl₂
- 10.0ml 20% glucose
- 1.0ml 1M thiamine-HCl
Filter the medium through a 0.2µm filter unit.

Phenol:Chloroform:isoamyl Alcohol (25:24:1)
Mix equal parts of TE buffer and phenol and allow the phases to separate. Then mix 1 part of the lower, phenol phase with 1 part of chloroform:isoamyl alcohol (24:1).

Potassium Acetate Solution (pH 4.8)
Prepare 60ml of 5M potassium acetate. Add 11.5ml of glacial acetic acid and 28.5ml of deionized water. This solution will be 3M with respect to potassium and 5M with respect to acetate. Store at 4°C.

SOC Medium

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0g Bacto®-tryptone</td>
<td>1mL 1M NaCl</td>
</tr>
<tr>
<td>0.5g Bacto®-yeast extract</td>
<td>1mL 1M KCl</td>
</tr>
<tr>
<td>0.25mL 2M Mg²⁺ stock (1M MgCl₂ • 6H₂O, 1M MgSO₄ • 7H₂O), filter-sterilized</td>
<td>1mL 2M glucose, filter-sterilized</td>
</tr>
</tbody>
</table>

Add Bacto®-tryptone, Bacto®-yeast extract, NaCl and KCl to 97ml deionized water. Stir to dissolve. Autoclave and cool to room temperature. Add 2M Mg²⁺ stock and 2M glucose stock, each to a final concentration of 20µM. Filter the complete medium through a 0.2mm filter unit. The pH should be 7.0.

TAE 10X Buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>400mM Tris base</td>
<td>200mM Sodium acetate</td>
</tr>
<tr>
<td>10mM EDTA</td>
<td>Adjust pH to 8.2 with glacial acetic acid.</td>
</tr>
</tbody>
</table>

TBE 10X Buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>890mM Tris base</td>
<td>890mM Boric acid</td>
</tr>
<tr>
<td>19mM EDTA</td>
<td>Adjust pH to 8.3.</td>
</tr>
</tbody>
</table>

TE Buffer

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10mM Tris-HCl (pH 8.0)</td>
<td>1mM EDTA</td>
</tr>
</tbody>
</table>

X-Gal Stock Solution (50mg/ml)

100mg 5-bromo-4-chloro-3-indolyl β-D-galactoside (X-Gal)
Dissolve in 2ml of N,N′-dimethylformamide. This stock solution is available from Promega (Cat.# V3941).
Table 12. Cloning Enzymes: Promega’s Quality Acceptance Criteria.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Concentration (u/iL)</th>
<th>SDS-PAGE Purity</th>
<th>Endonuclease: Supercoiled DNA, 1µg</th>
<th>dsDNAse: 50ng Radiolabeled DNA</th>
<th>RNase: 50ng Radiolabeled RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgarACE® Enzyme (1)</td>
<td>0.15–0.30</td>
<td>>90%</td>
<td>Gel analysis, absence of visible nicking or cutting, 5u/4hr at 42°C</td>
<td><1% release, 5u/4hr at 42°C</td>
<td><3% release, 5u/4hr at 42°C</td>
</tr>
<tr>
<td>Alkaline Phosphatase, Calf Intestinal (2)</td>
<td>1</td>
<td>N/A</td>
<td>Gel analysis, absence of visible nicking or cutting, 5u/1hr at 37°C</td>
<td><3% release, 5u/1hr at 37°C</td>
<td>N/A</td>
</tr>
<tr>
<td>RecA Protein (3,4)</td>
<td>N/A</td>
<td>>95%</td>
<td>Gel analysis, absence of visible nicking or cutting, 15µg/16hr at 37°C</td>
<td><1% release, 5µg/4hr at 37°C</td>
<td>N/A</td>
</tr>
<tr>
<td>T4 DNA Ligase (2,5)</td>
<td>1–3</td>
<td>>90%</td>
<td>Gel analysis, absence of visible nicking or cutting, 5u/16hr at 37°C</td>
<td><1% release, 20u/16hr at 37°C</td>
<td><3% release, 20u/5hr at 37°C</td>
</tr>
<tr>
<td>T4 Polynucleotide Kinase (6)</td>
<td>5–10</td>
<td>>90%</td>
<td>Gel analysis, absence of visible nicking or cutting, 25u/5hr at 37°C</td>
<td><3% release, 25u/3hr at 37°C</td>
<td>N/A</td>
</tr>
<tr>
<td>T4 RNA Ligase</td>
<td>9–12</td>
<td>>90%</td>
<td>20u/3hr at 37°C</td>
<td><1% release, 20u/3hr at 37°C</td>
<td>20u/3hr at 37°C</td>
</tr>
</tbody>
</table>

N/A – Not Applicable

1. T-Vector, Blue/White Assay is performed.
2. T-Vector, Lambda ligation and packaging, ssDNase.
3. ssDNA-dependent ATPase activity.
4. Strand exchange.
5. 5' strand exchange.
6. ssDNA end-ligated to high specific activity.

Table 13. Uses and Genotypes of Various Strains of E. coli.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL21(DE3)</td>
<td>F-,ompT, hsdS°, (rT, mT), dcm, gal, λ(DE3)</td>
<td>In vivo expression of T7 Promoter-driven genes (e.g., pET-5, pGEM®).</td>
</tr>
<tr>
<td>BL21(DE3)pLysS(H)</td>
<td>F-,ompT, hsdS°, (rT, mT), dcm, gal, λ(DE3), pLysS CmR</td>
<td>In vivo expression of T7 Promoter-driven genes (e.g., pET-5, pGEM®), pLysS provides tighter control of T7 RNA Pol expression.</td>
</tr>
<tr>
<td>BMH 71-18 mutS*</td>
<td>thi, supE, Δ(lac-proAB), [mutS::Tn10] [F', proAB, lacIq-H-ZaM15]</td>
<td>GeneEditor™ Site-Directed Mutagenesis System; mismatch repair deficient strain.</td>
</tr>
<tr>
<td>CJ236</td>
<td>F', cat(pCJ105; M13-Cmr)Idut, ung1, thi-1, relA1, spoT1, mcrA</td>
<td>Kunkel mutagenesis; dut(-), ung(-).</td>
</tr>
<tr>
<td>C600</td>
<td>thi-1, thr-1, leuB6, lacY1, supA21, supE44</td>
<td>λgt10, Permissive host; allows both parental and recombinant phage to grow.</td>
</tr>
<tr>
<td>C600hff</td>
<td>thi-1, thr-1, leuB6, lacY1, tonA21, supE44, thiA150, [chr::Tn10]</td>
<td>λgt10, Restrictive host; allows recombinant phage to grow in preference to parental phage.</td>
</tr>
<tr>
<td>DH1</td>
<td>recA1, endA1, gyrA96, thi-1, hsdR17 (rT, mT°), supE44, relA1</td>
<td>Parent of DH5. DH5 more efficiently transformed by large (40–60kb) plasmids.</td>
</tr>
<tr>
<td>DH5sre®</td>
<td>80lacZaM15, recA1, endA1, gyrA96, thi-1, hsdR17 (rT, mT°), supE44, relA1, deoR, Δ(lacZYA-argF)U169</td>
<td>Common host for cDNA cloning; supports α-complementation, relA(-) and endA(-).</td>
</tr>
<tr>
<td>DH5sre®F*</td>
<td>F', 80lacZaM15, recA1, endA1, gyrA96, thi-1, hsdR17 (rT, mT°), supE44, relA1, deoR, Δ(lacZYA-argF)U169</td>
<td>Single-stranded DNA synthesis.</td>
</tr>
<tr>
<td>ES1301 mutS*</td>
<td>lacZ53, thyA36, rha-5, mfiB1, deoC, IN(rrnD-rrnE), [mutS201::Tn5]</td>
<td>Provided with the Altered Sites® Mutagenesis Systems; mismatch repair deficient (kanR).</td>
</tr>
<tr>
<td>HB101*</td>
<td>thi-1, hsdS20 (rT, mT°), supE44, recA13, ara-14, leuB6, proA2, lacY1, rpsL20 (str), xylS-5, mtl-1, galK2</td>
<td>Common strain for propagating plasmids that do not allow α-complementation.</td>
</tr>
<tr>
<td>JM83</td>
<td>ara, Δ(lac-proAB), rpsL, 80lacZaM15</td>
<td>Host for pUC plasmids; pBR322- relA(+), rT°, mT°.</td>
</tr>
<tr>
<td>JM101</td>
<td>supE, thi, Δ(lac-proAB), [F', traD36, proAB, lacIq-ZaM15]</td>
<td>Host for M13mp vectors; relA(+), rT°.</td>
</tr>
</tbody>
</table>

Strains listed in boldface are available from Promega.

* Indicates strains available as competent cells.

(continued)
<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM103</td>
<td>endA1, hsdR, supE, sbcB15, thi-1, strA, Δ(lac-proAB), [F’, traD36, proAB, lachZΔM15]</td>
<td>Host for M13mp vectors; recA(+)</td>
</tr>
<tr>
<td>JM105</td>
<td>endA1, thi, rpsL, sbcB15, hsdR4, Δ(lac-proAB), [F’, traD36, proAB, lachZΔM15]</td>
<td>Host for M13mp vectors; recA(+)</td>
</tr>
<tr>
<td>JM107</td>
<td>endA1, thi, gyrA96, hsdR17 (r<sub>c</sub>, m<sub>c</sub>), relA1, supE44, Δ(lac-proAB), [F’, traD36, proAB, lachZΔM15]</td>
<td>Host for M13mp vectors; recA(+)</td>
</tr>
<tr>
<td>JM108</td>
<td>endA1, relA1, gyrA96, thi, hsdR17 (r<sub>c</sub>, m<sub>c</sub>), relA1, supE44, Δ(lac-proAB)</td>
<td>Recombination deficient mutation in rec A increases stability of plasmids.</td>
</tr>
<tr>
<td>JM109<sup>*</sup></td>
<td>endA1, relA1, gyrA96, thi, hsdR17 (r<sub>c</sub>, m<sub>c</sub>), relA1, supE44, Δ(lac-proAB), [F’, traD36, proAB, lachZΔM15]</td>
<td>Common host for cloning; ssDNA synthesis; restriction(-), rec(-), allows α-complementation: Included with the majority of our plasmids; Maintain on M9 plates supplemented with thiamine (to maintain F<sup>+</sup> episome).</td>
</tr>
<tr>
<td>JM109(DE3)</td>
<td>endA1, relA1, gyrA96, thi, hsdR17 (r<sub>c</sub>, m<sub>c</sub>), relA1, supE44, Δ(lac-proAB), [F’, traD36, proAB, lachZΔM15]</td>
<td>In vivo expression of T7 Promoter-driven genes (e.g., pET-5, pGEM<sup>®</sup>), allows α-complementation.</td>
</tr>
<tr>
<td>JM110</td>
<td>rpsL, thi, leu, thi, hsdR17 (r<sub>c</sub>, m<sub>c</sub>), lacY, galK, galI, ara, tnaA, tss, dam, dcm, supE44, Δ(lac-proAB), [F’, traD36, proAB, lachZΔM15]</td>
<td>dam<sup>+</sup>, dcm<sup>-</sup> strain, allows α-complementation.</td>
</tr>
<tr>
<td>LE392</td>
<td>hsdR514, (r<sub>c</sub>, m<sub>c</sub>), supE44, supF58, lacYI or Δ(lacZYI)6, galK2, galT22, merB1, trpR55</td>
<td>Genomic and cDNA cloning; restriction(-), rec(+) permissive host, no color selection, lon (+). Recommended if no color selection needed as primary strain for amplification of recombinant plasmid and screening of cDNA library with nucleic acid probe.</td>
</tr>
<tr>
<td>KW251</td>
<td>supE44, galK2, galT22, metB1, hsdR2, mcrB1, mcrA, [arg8A1::Tn10], recD1014</td>
<td>Genomic cloning; permissive host, used as alternative to LE392; rec(-) strain, restriction (-), tet<sup>+</sup>.</td>
</tr>
<tr>
<td>MB408</td>
<td>recF, recB21, recC22, sbcB15, hflA, hflB, hsdR1, (tet<sup>-</sup>)</td>
<td></td>
</tr>
<tr>
<td>MC1061</td>
<td>F<sup>+</sup>, araD139, Δ(ara-leu)7696, galE15, galK16, Δ(lac)X74, rpsL(Str), hsdR2<sub>a</sub>(r<sub>c</sub>, m<sub>c</sub>), mcrA, mcrB1</td>
<td></td>
</tr>
<tr>
<td>NM522</td>
<td>supE, thi, Δ(lac-proAB), Δ(hsd5<sub>episome</sub>), [F’, proAB, lachZΔM15]</td>
<td>saDNA synthesis; restriction (-), rec (+), F<sup>+</sup>. Grow on M9 plates to maintain F<sup>+</sup> episome.</td>
</tr>
<tr>
<td>NM538</td>
<td>supF, hsdR (r<sub>c</sub>, m<sub>c</sub>), trpR, lacY</td>
<td>Genomic cloning; permissive host.</td>
</tr>
<tr>
<td>NM539</td>
<td>supF, hsdR (r<sub>c</sub>, m<sub>c</sub>), lacY, (P2)</td>
<td>Restrictive host; used for Spi selection of recombinant plasmid.</td>
</tr>
<tr>
<td>P3292</td>
<td>LE392 (P2)</td>
<td></td>
</tr>
<tr>
<td>RR1</td>
<td>hsdR20, (r<sub>c</sub>, m<sub>c</sub>), supE44, ara-14, proA2, rpsL20 (str<sup>+</sup>), lacY1, galK2, xyf-1, met-1, supE44</td>
<td>Rec A (+) version of HB101.</td>
</tr>
<tr>
<td>χ1776</td>
<td>tonA53, dcpA8, minA1, glnA44, supE44, Δ(gal-uvr)40, minB2, rb-2, gyrA25, thyA142, oms-2, metC65, osm-1, (leu-1), Δ(bioH-asd)29, cysC22, cyaA1, hsdR2</td>
<td>Debilitated strain used in early work with recombinant DNA.</td>
</tr>
<tr>
<td>XL1-Blue</td>
<td>recA1, endA1, gyrA96, thi, hsdR17(r<sub>c</sub>, m<sub>c</sub>), supE44, relA1, lac, [F’, proAB, lachZΔM15, Δ(+) (tet<sup>+</sup>)]</td>
<td>Common host for cloning.</td>
</tr>
<tr>
<td>SURE Cells</td>
<td>E44 (McrA<sup>-</sup>) Δ(mcrCB-hsdSMR-mvir) 171 endA1, supE44, thi-1, gyrA96, relA1, lac, recB, recJ, sbcC, umuC::Tn5(kanR), uvrC, [F’, proAB, lachZΔM15, Δ(+) (tet<sup>+</sup>)]</td>
<td>Increased stability of DNA containing inverted repeats or Z-DNA (Stratagene); F<sup>+</sup> episome-able to make ssDNA from phagemid DNA.</td>
</tr>
<tr>
<td>Y1088</td>
<td>Δ(lacU169), supE, supF, hsdR (r<sub>c</sub>, m<sub>c</sub>), melB, trpR, tonA21, [proC::Tn5] (pMC9)</td>
<td>Host for amplification of cDNA libraries. pMC9 confers amp<sup>R</sup>, tet<sup>+</sup>.</td>
</tr>
<tr>
<td>Y1089</td>
<td>Δ(lacU169), proA<sup>+</sup>, Δ(ori), araD139, strA, hflA150, [chr::Tn10(tet<sup>+</sup>)], (pMC9)</td>
<td>cDNA cloning- lon(-), hflA150 (enhances lysogeny), pMC9- maintain on ampic/tet plates: Used primarily for generation of preparative amounts of recombinant fusion protein. pMC9 confers amp<sup>R</sup>, tet<sup>+</sup>.</td>
</tr>
<tr>
<td>Y1090</td>
<td>Δ(lacU169), proA<sup>+</sup>, Δ(ori), araD139, strA, supF, [trpC22::Tn10 (tet<sup>+</sup>)] (pMC9), hsdR (r<sub>c</sub>, m<sub>c</sub>)</td>
<td>cDNA cloning. Useful for screening expression cDNA libraries. pMC9 confers amp<sup>R</sup>, tet<sup>+</sup>.</td>
</tr>
</tbody>
</table>

Strains listed in boldface are available from Promega.

* Indicates strains available as competent cells.
Table 14. Applications of Promega’s Competent Cells.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Cells</th>
<th>Genotype</th>
<th>>1 x 10⁸ cfu/µg</th>
<th>>1 x 10⁷ cfu/µg</th>
<th>>1 x 10⁶ cfu/µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloning</td>
<td>JM109</td>
<td>endA1, recA1, gyrA96, thi, hsdR17 (r<sup>C</sup>, m<sup>+</sup>), relA1, supE44 ∆(lac-proAB), [F<sup>T</sup> traD36, proAB lacZΔM15].</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>T-Vector Cloning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue/White Screening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloning</td>
<td>HB101</td>
<td>F′, thi-1, hsdS20 (r<sup>C</sup>, m<sup>+</sup>), supE44, recA13, ara-14, leuB6, proA2, lacY1, galK2 rpsL20, (str), xyl-5, mtl-1</td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Site-Directed</td>
<td>BMH 71-18 mutS</td>
<td>thi, supE, ∆(lac-proAB), [mutS::Tn50], [F<sup>T</sup> proAB, lacZΔM15].Mutagenesis</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutagenesis</td>
<td>ES1301 mutS</td>
<td>lacZ53, mutS201::Tn5, thyA36, rha-5, metB1, decC1, IN(rrnD-rrnE).</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein Expression</td>
<td>BL21 (DE3)pLysS<sup>(a)</sup></td>
<td>F′, ompT, hsdS20 (r<sup>C</sup>, m<sup>+</sup>), dcm, gal, (DE3), pLysS, Cm<sup>T</sup></td>
<td>✔</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

Table 15. Cloning Enzyme 10X Reaction Buffer Formulations.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>10X Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>4</sub> DNA Ligase<sup>*</sup></td>
<td>300mM Tris-HCl (pH 7.8), 100mM MgCl₂, 100mM DTT, 10mM ATP</td>
</tr>
<tr>
<td>T<sub>4</sub> RNA Ligase</td>
<td>500mM Tris-HCl (pH 7.8), 100mM MgCl₂, 50mM DTT, 10mM ATP</td>
</tr>
<tr>
<td>T<sub>4</sub> Polynucleotide Kinase (PNK)</td>
<td>700mM Tris-HCl (pH 7.6), 100mM MgCl₂, 50mM DTT</td>
</tr>
<tr>
<td>Calf Intestinal Alkaline Phosphatase (CIAP)</td>
<td>500mM Tris-HCl (pH 9.3), 10mM MgCl₂, 1mM ZnCl₂, 10mM spermidine</td>
</tr>
</tbody>
</table>

[*] pGEM[®]-T and pGEM[®]-T Easy Vector Systems (Cat.# A1360, A1380, A3600, A3610) provide a 2X Rapid Ligation Buffer for T₄ DNA Ligase with a formulation of: 60mM Tris-HCl (pH 7.8), 20mM MgCl₂, 20mM DTT, 2mM ATP, 10% polyethylene glycol (MW ≈5000).

The Rapid Ligation Buffer enables performance of ligation reactions in as little as 1 hour.
General References

Additional Literature
Technical Manuals and Product Information Sheets
#9PIM180 T4 DNA Ligase
#9PIM182 Calf Intestinal Alkaline Phosphatase
#9PIM181 T4 DNA Polymerase
#9PM220 DNA Polymerase I Large (Klenow) Fragment
#TM042 pGEM®-T and pGEM®-T Easy Vector Systems

Promega Notes Articles
PN032 pGEM®-ZI Vector update: Considerations for optimal single-stranded DNA production
PN045 pGEM®-T Vector Systems troubleshooting guide
PN051 pGEM®-T Vector: Technically Speaking
PN054 pGEM®-T Vector: Cloning of modified blunt-ended DNA fragments
PN071 Rapid Ligation for the pGEM®-T and pGEM®-T Easy Vector Systems

Cloning Blunt End To DNA Polymerase-Generated PCR Fragments into pGEM®-T Vector
Glossary

5′-RACE: Rapid Amplification of cDNA 5′-Ends.
Activated Calf Thymus DNA: Nicked and gapped dsDNA prepared by treatment with DNase I, a substrate for many DNA polymerases.
Alkaline Phosphatase (AP): An enzyme that catalyzes the removal of a phosphate group from a substrate. This property is used in colormetric and chemiluminescent detection reagents.

Alpha Complementation: The process by which a functional β-galactosidase (lacZ) gene is generated when the lacZ α-peptide (N-terminus) complements the α-peptide fragment (C-terminus). In general, a cloning vector contributes the lacZ α-peptide and the host bacterial strain provides the α-peptide fragment. See also blue/white cloning.
Blue/White Cloning: A technique used to identify recombinant (positive) clones in cloning experiments. Specially constructed cloning vectors will produce β-galactosidase by α-complementation when transformed into the appropriate host strain after exposure to the chemical IPTG. This will cause the cells to exhibit a blue color in the presence of the substrate X-Gal. Foreign DNA inserted into the cloning vector will interrupt the lacZ gene, preventing α-complementation and producing white colonies.

Blunt Ends: DNA ends that do not possess short, single-stranded overhangs. See also sticky ends.

Cloning: The production of a large number of identical DNA molecules from a single DNA molecule through replication of the DNA within a cell. Cloning also refers to the production of large numbers of identical cells from a single cell.

Cohesive Ends: Two DNA ends, in the same or different molecules, which have short, single-stranded overhangs that are complementary to one another. Cohesive ends allow comparatively efficient ligation of DNA molecules. See also sticky ends.

Competent Cells: Bacterial cells that are able to take in exogenous DNA.

Distributive: Enzyme dissociates from template after a single nucleotide addition.

DNA (Deoxyribonucleic Acid): A polymeric molecule composed of deoxyribonucleotide units joined in a specific sequence through the formation of 3′→5′ phosphodiester bonds.

DNase (Deoxyribonuclease): An enzyme that breaks down DNA into small fragments or deoxyribonucleotides.

DNA Ligase: An enzyme that joins two DNA molecules (or two ends of the same DNA molecule) by forming a phosphodiester bond between the 3′- and 5′-ends.

dTTP: Deoxyribonucleotide 5′-triphosphate.
d: Double-stranded.

DTT: Dithiothreitol.

End-Labeling: The addition of a labeled group (radioactive or nonradioactive) to the 5′- or 3′-end of DNA or RNA. This is typically accomplished by using a kinase to label the 5′-end, or a DNA polymerase or terminal deoxynucleotidyl transferase to label the 3′-end.

Endonuclease: An enzyme that hydrolyzes phosphodiester bonds at internal locations within a DNA or RNA molecule.

Exonuclease: An enzyme that hydrolyzes phosphodiester bonds at the ends of DNA or RNA molecules, resulting in the stepwise removal of nucleotides.

Gene: A segment of DNA that encodes a polypeptide, protein or RNA molecule.

Genotype: The specific genes (which may or may not be expressed) that are present in an organism.

Heat-Inactivation: Destroying an enzyme’s activity by heating to a high temperature (typically 60–70°C) for an extended length of time. Not all enzymes can be heat-inactivated.

In vitro: A reaction or experiment performed in the absence of living cells, typically using conditions that attempt to mimic those found within cells.

In vivo: A reaction or experiment performed in a living organism or cell.

kb: Kilobase or kilobase pairs.

kcat: Maximum number of substrate molecules converted to products per active site per unit time.
kDa: KiloDalton.

Km: The Michaelis constant; the concentration of substrate that an enzyme can convert to product at half its maximal rate.

Labeling: A process in which nucleic acids or proteins are tagged with a radioactive or nonradioactive marker.

Ligase: An enzyme that catalyzes DNA or RNA linkage, generally splitting off a pyrophosphate group from ATP concurrently.

Multiple Cloning Site (MCS): The region of a DNA vector that contains unique restriction enzyme recognition sites into which foreign DNA can be inserted; also called a polylinker.

Nuclease: An enzyme that degrades nucleic acids.

Nucleotide: A molecule composed of an organic base, sugar and phosphate group, which constitutes the “building blocks” of nucleic acids (DNA and RNA).

Oligonucleotide (Oligo): A short (typically <50 nucleotides), single-stranded DNA or RNA molecule.

PCR: Polymerase Chain Reaction.

PEG: Polyethylene glycol.

Phosphatase: An enzyme that removes a phosphate group from a protein, nucleic acid or other molecule.

PPi: Inorganic pyrophosphate.

Primer: An oligonucleotide or short single-stranded nucleic acid that acts as a starting point for the synthesis of nucleic acids from a template.

Promoter: DNA sequence for the initiation of RNA transcription by RNA polymerase.

RNA (Ribonucleic Acid): A polymeric molecule composed of ribonucleotide units joined in a specific sequence through the formation of 3′→5′ phosphodiester bonds.

RNase (Ribonuclease): An enzyme that breaks down RNA into smaller RNA fragments or ribonucleotides.

rTTP: Ribonucleotide 5′-triphosphate.

ss: Single-stranded.

Sticky Ends: Two DNA ends, in the same or different molecules, that have short, single-stranded overhangs that are complementary to one another. Sticky ends allow comparatively efficient ligation of DNA molecules. See also Cohesive Ends.

TAE: Tris Acetate EDTA.

TCA: Trichloroacetic acid.

Terminator: DNA sequence for the termination of RNA transcription by RNA polymerase.

Transformation: The process during which a plasmid DNA is inserted into a bacterial cell.

Turnover Rate (kcat): Maximum number of substrate molecules converted to products per active site per unit time.

Vector: A DNA molecule that can replicate within a host cell and that allows the insertion of foreign DNA sequences. Vectors commonly used may be plasmids, phagemids or bacteriophage.
Cover Art adapted from Figure 3 p. 139 in Alberto I. Roca and Michael M. Cox, “RecA Protein: Structure, Function, and Role in Recombinational DNA Repair,” in Progress in Nucleic Acid Research, Volume 56, pp. 129-224, edited by Waldo E. Cohn and Kivia Moldave. Reprinted by permission. Copyright © 1997 by Academic Press.

AgarACE, Altered Sites, Erase-a-Base, Imol, OmnisBase, Packagene, pGEM, Prime-a-Gene, Ribocline, TaqTrack and Wizard are trademarks of Promega Corporation and are registered with the U.S. Patent and Trademark Office.

GeneEditor, MULTI-CORE, pBESTLuc, PinPoint and pTARGET and SoftLink are trademarks of Promega Corporation.

Bacto is a registered trademark of Difco Laboratories, Detroit, Michigan. Coomassie is a registered trademark of Imperial Chemical Industries, Ltd. DH5α is a registered trademark of Life Technologies, Inc. Ficol is a registered trademark of Amersham Pharma Biotech AB. GTG, NuSieve and SeaPlaque are registered trademarks of FMC Corporation. SpeedSelect is a registered trademark of Savant Instruments. SURE is a registered trademark of Stratagene. SYBR is a registered trademark of Molecular Probes, Inc. Tween is a registered trademark of ICI Americas, Inc.

©U.S. Pat. No. 5,869,310 and other patents.
©U.S. Pat. No. 5,658,548 and other patents.
©Licensed under U.S. Pat. No. 5,075,430.
©U.S. Pat. No. 4,766,072.

Usage Restrictions for the T7 Expression System

The T7 expression system is based on technology developed at Brookhaven National Laboratory under contract with the U.S. Department of Energy and is the subject of patents and patent applications assigned to Brookhaven Science Associates, LLC (BSA). This technology, including bacteria, phage and plasmids that carry the gene for T7 RNA polymerase, is to be used for academic or nonprofit laboratory or licensed commercial research purposes only. By accepting or using the T7 expression technology you agree to be bound by the following conditions set forth by BSA. The initial purchaser may refuse to accept the conditions of this notice by returning this product and the enclosed materials to Promega unused.

Academic and Nonprofit Laboratories

No materials that contain the cloned gene for T7 RNA polymerase may be distributed further to third parties outside of your laboratory unless the recipient receives a copy of this assurance notice and agrees to be bound by its terms. This limitation applies to Bacterial Strains JM109(DE3) and BL21(DE3)pLYSg, to the following Promega products that include these bacterial strains (pGEMEX®-1 and pGEMEX®-2 Vectors, pET-5 and pET-9 Vectors, and all pET Vector Systems) and to any derivative thereof.

Commercial Laboratories

A license is required for any commercial use of the T7 expression system, including use of the T7 system for research purposes or for production purposes by any commercial entity. Information about commercial licenses may be obtained from the Licensing Office, Brookhaven National Laboratory, Upton, NY 11973, Telephone: 516-344-3312, FAX: 516-344-3729.

©Licensed under one or both of U.S. Pat. No. 5,487,993 and European Patent No 0 550 693.
©U.S. Pat. No. 5,795,370.
©Covered under U.S. Pat. No. 5,168,064 assigned to the University of Iowa Research Foundation.
©For research purposes only. Not for diagnostic or therapeutic use. For nonresearch uses of the portion of the vector encoding the biotinylation sequence, please contact Promega Corporation for licensing information.
©U.S. Pat. No. 5,552,302 and other patents. Inhibitors of Angiogenin, which comprises a segment of human PRI, is the subject of U.S. Pat. No. 4,966,964 and other patents assigned to the President and Fellows of Harvard College and exclusively licensed to Promega Corporation.
©Licensed from Boehringer Mannheim GmbH under U.S. Pat. No. 4,804,748.
©The method of recombinant expression of (k) Licensed from Boehringer Mannheim GmbH under U.S. Pat. No. 4,804,748.

For bulk purchasing of the SoftLink™ Resin, contact TosoHaas, 156 Keystone Drive, Montgomeryville, PA 18936.

©A license is required for any commercial use of the T7 expression system, including use of the T7 system for research purposes or for production purposes by any commercial entity. Information about commercial licenses may be obtained from the Licensing Office, Brookhaven National Laboratory, Upton, NY 11973, Telephone: 516-344-3312, FAX: 516-344-3729.

©Licensed under one or both of U.S. Pat. No. 5,487,993 and European Patent No 0 550 693.
©U.S. Pat. No. 5,795,370.
©Covered under U.S. Pat. No. 5,168,064 assigned to the University of Iowa Research Foundation.
©For research purposes only. Not for diagnostic or therapeutic use. For nonresearch uses of the portion of the vector encoding the biotinylation sequence, please contact Promega Corporation for licensing information.
©U.S. Pat. No. 5,552,302 and other patents. Inhibitors of Angiogenin, which comprises a segment of human PRI, is the subject of U.S. Pat. No. 4,966,964 and other patents assigned to the President and Fellows of Harvard College and exclusively licensed to Promega Corporation.
©Licensed from Boehringer Mannheim GmbH under U.S. Pat. No. 4,804,748.
©The method of recombinant expression of (k) Licensed from Boehringer Mannheim GmbH under U.S. Pat. No. 4,804,748.