NanoBRET™ Technology

Investigate the Dynamics of Protein:Protein Interactions in Live Cells
The NanoBRET™ PPI System represents a powerful and robust method for the investigation of protein:protein interactions (PPI) in live cells with applicability to high-throughput screenings (HTS). It enables dynamic measurements of protein interactions in real-time and it is used in both applied and academic research. Monitoring signaling pathway activity is one application of the NanoBRET™ PPI System.

Principle

The NanoBRET™ PPI System is based on the phenomenon of bioluminescence resonance energy transfer (BRET) in which energy is transferred from a donor luciferase to an acceptor fluorophore in a radiation-free manner, as these two components are brought into close proximity (< 10 nm). The resulting excitation of the fluorophore can be detected by light emission at longer wavelengths. The combination of the intensely bright NanoLuc® luciferase with the spectrally adjusted NanoBRET™ 618 fluorophore forms the centerpiece of the NanoBRET™ technology (see Figures 1 and 2). This combination allows the set up of homogeneous and robust protein interaction assays with an excellent signal-to-noise ratio.

NanoBRET™ Technology

![NanoBRET™ Technology diagram](image)

Features

- **Live cell assay**: Measurement of protein:protein interactions in their native environment
- **Robust**: Low assay variability and high reproducibility (high Z’ factor)
- **Physiological expression level**: Study induction and inhibition of protein interactions using full-length proteins expressed at physiologically relevant levels
- **High-throughput approved**: 96- or 384-well plates
- **Ratiometric assay**: No further normalization against cell number/protein content required
- **Sensitivity/linear range**: Significantly improved compared to conventional BRET methods due to the wide spectral separation of donor and acceptor emission
- **Intrinsic negative control**: No separate “donor-only” transfection required

![NanoBRET™ 618 Fluorophore](image)

Figure 1: Measurement of protein:protein interactions in live cells with NanoBRET™ requires the expression of the interaction partners (A and B) as fusion proteins with NanoLuc® and HaloTag®. Upon interaction of protein A and protein B energy will be transferred from the NanoLuc® luciferase to the NanoBRET™ 618 fluorophore, which is covalently attached to the HaloTag® protein. Finally, the energy transfer results in acceptor fluorophore excitation and light emission.

Figure 2: The large spectral separation of donor (NanoLuc®, Emmax: 460 nm) and acceptor signals (NanoBRET™ 618 fluorophore, Emmax: 618 nm) facilitates an improved signal-to-noise ratio. The signals are recorded in two separated channels: (1) Donor channel at 460 nm using a bandpass filter, and (2) acceptor channel at 610 nm using a longpass filter. The BRET ratio is determined by dividing the acceptor signal by the donor signal.
Applications of NanoBRET™ in Live Cells

NanoBRET™ allows the measurement of protein:protein association and dissociation in live cells. Therefore, it is especially useful in experiments addressing the induction or inhibition of protein interactions.

Areas of Application

- Small molecule/off-target screening
- Peptide library screening
- Validation of in vitro data
- Kinetic measurements
- Dose-response measurements
- Reporter cell lines

Ligand-induced protein interaction as demonstrated for the recruitment of ß-arrestin 2 to the vasopressin receptor 2

Figure 3: (A) Dose-dependent and (B) time-dependent recruitment of ß-arrestin 2 (arr2) to the vasopressin receptor 2 (AVPR2) after addition of the peptide hormone arginine vasopressin (AVP).

Inhibition of p53:MDM2 interaction by Nutlin-3

Figure 4: (A) Dose-dependent inhibition of p53:MDM2 interaction by Nutlin-3. (B) Effect of a single dose Nutlin-3 on the p53:MDM2 interaction in 96-well or 384-well-format with corresponding Z’ factors.
Directly get started with our selection of ready-to-use protein interaction assays. The pre-built and validated assays contain experimentally optimized vector constructs, protocols and reagents for a variety of interesting biological targets.

- **Epigenetic protein assays**, e.g. bromodomain:histone interaction
- **Signal protein assays**, e.g. Kras/Braf
- **Kinase assays**, e.g. ERK/ELK
- **Transcription factor assays**, e.g. cMyc/Max
- **Membrane protein assays**, e.g. EGFR/GRB2
- **RNA binding protein assays**, e.g. hnRNPA/hnRNPF

Assays on the website

For a complete list of pre-built NanoBRET™ assays visit our Promega website:

www.promega.com/nanobret

“Ready-to-use” NanoBRET™ Assays

<table>
<thead>
<tr>
<th>Assay Description</th>
<th>Size</th>
<th>Cat.No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoBRET™ BRD4/Histone H3.3 Interaction Assay</td>
<td>1x each*</td>
<td>N1830</td>
</tr>
<tr>
<td>NanoBRET™ BRD4/Histone H4 Interaction Assay</td>
<td>1x each*</td>
<td>N1890</td>
</tr>
<tr>
<td>NanoBRET™ BRD9/Histone H3.3 Interaction Assay</td>
<td>1x each*</td>
<td>N1840</td>
</tr>
<tr>
<td>NanoBRET™ BRD9/Histone H4 Interaction Assay</td>
<td>1x each*</td>
<td>N1900</td>
</tr>
<tr>
<td>NanoBRET™ CBP/Histone H3.3 Interaction Assay</td>
<td>1x each*</td>
<td>N1850</td>
</tr>
<tr>
<td>NanoBRET™ BRPF1/Histone H3.3 Interaction Assay</td>
<td>1x each*</td>
<td>N1860</td>
</tr>
<tr>
<td>NanoBRET™ BRPF1/Histone H4 Interaction Assay</td>
<td>1x each*</td>
<td>N1910</td>
</tr>
<tr>
<td>NanoBRET™ cMyc/MAX Interaction Assay</td>
<td>1x each*</td>
<td>N1870</td>
</tr>
<tr>
<td>NanoBRET™ KRas/BRaf Interaction Assay</td>
<td>1x each*</td>
<td>N1880</td>
</tr>
<tr>
<td>NanoBRET™ PPI Control Pair (p53,MDM2)</td>
<td>1x each*</td>
<td>N1641</td>
</tr>
</tbody>
</table>

* All ready-to-use NanoBRET™ assays contain, in addition to the optimized and validated vector constructs, the control pair p53/MDM2 and reagents for 200 assays (96-well). A complete list of the ready-to-use NanoBRET™ assays can be found: www.promega.com/nanobret
The NanoBRET™ PPI Starter Systems provide the expression vectors required to generate N- and C-terminal NanoLuc® luciferase and HaloTag® protein fusions to target proteins. Additionally, the starter systems contain detection reagents for 200 assays (96-well) / 500 assays (384-well) and a NanoBRET™ positive control pair (p53-HaloTag® and NanoLuc®-MDM2).

NanoBRET™ PPI Starter Systems

NanoBRET™ PPI Flexi® Starter System

Fast – Efficient – High Fidelity Cloning Method

The NanoBRET™ PPI Flexi® Starter System is composed of Flexi® vectors for the rapid and easy generation of required expression constructs. The system provides expression vectors for the generation of N- and C-terminal NanoLuc® and HaloTag® protein fusions using the Flexi® Vector Cloning System. The Flexi® system is a directional cloning method based on the two rare-cutting restriction enzymes, SgfI and Pmel. Prerequisite for the application of Flexi is that neither SgfI nor Pmel cut in the Open Reading Frame (ORF) of interest. In general the workflow starts with an initial PCR of the ORF of interest introducing SgfI and Pmel restriction sites. The resulting fragment is introduced into the pFNZ21A HaloTag® vector which serves as a shuttle vector for the rapid and easy generation of the remaining N- and C-terminal NanoLuc® and HaloTag® fusions. The Flexi® Vector Cloning System provides a high-fidelity way to transfer protein-coding regions between Flexi® Vectors without the need to resequence. The Find My Gene™ service contains many ORF clones already in Flexi® format for simple creation of protein fusions.

NanoBRET™ PPI MCS Starter System

The NanoBRET™ PPI MCS Starter System contains the required expression vectors for the generation of N- and C-terminal NanoLuc® and HaloTag® fusions to target proteins using traditional cloning via a multiple cloning site (MCS). Users of the MCS vectors should make sure that the insert is cloned in frame and that the respective start and stop codons are positioned properly.

NanoBRET™ PPI Starter Kits

<table>
<thead>
<tr>
<th>NanoBRET™ PPI Flexi® Starter System</th>
<th>Size</th>
<th>Cat.No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1321: pFN31K Nluc CMV-neo Flexi® Vector</td>
<td>1x each*</td>
<td>N1821</td>
</tr>
<tr>
<td>N1341: pFC32K Nluc CMV-neo Flexi® Vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2821: pFN21A HaloTag® CMV Flexi® Vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G9661: pFC14K HaloTag® CMV Flexi® Vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1641: NanoBRET™ PPI Control Pair (p53, MDM2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1661: NanoBRET™ Nano-Glo® Detection System (200 assays, 96-well)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NanoBRET™ PPI MCS Starter System</th>
<th>Size</th>
<th>Cat.No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1351: pNLF1-N [CMV/Hygro] Vector</td>
<td>1x each*</td>
<td>N1811</td>
</tr>
<tr>
<td>N1361: pNLF1-C [CMV/Hygro] Vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7721: pHTN HaloTag® CMV-neo Vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G7711: pHTC HaloTag® CMV-neo Vector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1641: NanoBRET™ PPI Control Pair (p53, MDM2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1661: NanoBRET™ Nano-Glo® Detection System (200 assays, 96-well)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The NanoBRET™ Nano-Glo® Detection System provides the NanoBRET™ Nano-Glo® Substrate used by NanoLuc® luciferase to generate the donor signal and the HaloTag® NanoBRET™ 618 Ligand as fluorescent energy acceptor. The detection system is available in three different sizes.

<table>
<thead>
<tr>
<th>NanoBRET™ Nano-Glo® Detection Reagents</th>
<th>Size</th>
<th>Cat.No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoBRET™ Nano-Glo® Detection System</td>
<td>200 assays / 96-well plates</td>
<td>N1661</td>
</tr>
<tr>
<td></td>
<td>500 assays / 384-well plates</td>
<td></td>
</tr>
<tr>
<td>NanoBRET™ Nano-Glo® Detection System</td>
<td>1,000 assays / 96-well plates</td>
<td>N1662</td>
</tr>
<tr>
<td></td>
<td>2,500 assays / 384-well plates</td>
<td></td>
</tr>
<tr>
<td>NanoBRET™ Nano-Glo® Detection System</td>
<td>10,000 assays / 96-well plates</td>
<td>N1663</td>
</tr>
<tr>
<td></td>
<td>25,000 assays / 384-well plates</td>
<td></td>
</tr>
</tbody>
</table>

NanoBRET™ Assay Workflow

1. Co-transfect donor and acceptor vectors.
2. Replate cells with and without HaloTag® NanoBRET™ 618 Ligand.
4. Calculate BRET-ratio:

 \[\text{BRET-ratio} = \frac{\text{Acceptor}_{618\text{ nm}}}{\text{Donor}_{460\text{ nm}}} \]

Figure 6: Schematic illustration of a NanoBRET™ PPI assay. In the first step the fusion constructs are transfected into live cells. Subsequently, the HaloTag® NanoBRET™ 618 Ligand is added directly to the cells during plating, whereas the addition is omitted to those cells serving as donor-only control. The NanoBRET™ Nano-Glo® Substrate is added to the sample just prior the measurement of donor and acceptor emission. Donor and acceptor signal are recorded with a BRET-compatible plate reader such as the GloMax® Discover System using a bandpass filter with 460 nm and a longpass filter with 610 nm. The acceptor signal is divided by the donor signal to calculate the BRET-ratio.

Literature NanoBRET™

The detection of NanoBRET™ requires a BRET-capable plate reader equipped with two emission filters for the sequential measurement of filtered luminescence. A bandpass filter with 460 nm and a longpass filter with 610 nm are recommended to record the emission of the donor luciferase and the emission of the acceptor fluorophore.

The new multimode plate reader GloMax® Discover was optimized for the measurement of NanoBRET™. The instrument is equipped with a 450 nm/8 nm bandpass filter and a 610 nm longpass filter to record the donor and acceptor signal, respectively.

GloMax® Discover allows the detection of luminescence, fluorescence, UV/Vis absorbance, BRET, FRET as well as the measurement of filtered luminescence. This high-performance instrument reads common plate formats 6-, 96- and 384-well with very high sensitivity and over a broad linear range. The system is easily operated by an integrated tablet-PC and can be incorporated in an automated workflow.

Various applications:
- Reporter gene assays
- Cell viability, cytotoxicity and apoptosis assays
- Kinetic measurements
- Multiplexing
- Assays for the detection of oxidative stress and cell metabolism
- ELISA
- BRET/FRET analysis
Worldwide Promega Contact Details

America
United States/Canada
Tel: 608-274-4330
Fax: 608-277-2516
Toll-Free Tel: 800 356 9526
Toll-Free Fax: 800 356 1370
E-mail: custserv@promega.com

Brazil
Tel: +55 11 5090 3780
Fax: +55 11 5096 3780
E-mail: promega.brasil@promega.com

Europe
Germany/Austria
Tel: +49 621 8501 291
Fax: +49 621 8501 222
E-mail: de_custserv@promega.com

Switzerland
Tel: +44 878 90 00
Fax: +44 878 90 10
E-mail: ch_custserv@promega.com

France
Tel: +33 0437 2250 00
Fax: +33 0437 2250 10
Numero Vert: 0 800 48 79 99
E-mail: contactfr@promega.com

Italy
Tel: +39 0254 0501 94
Fax: +39 0258 5616 45
Toll-Free Phone: 800 6918 18
E-mail: customerservice.italia@promega.com

Poland
Tel: +48 22 531 0667
Fax: +48 22 531 0669
E-mail: pl_custserv@promega.com

Belgium/Luxembourg/The Netherlands
Tel: +31 71 532 42 44
Fax: +31 71 532 49 07
E-mail: benelux@promega.com

Spain
Tel: +34 902 538 200
Fax: +34 902 538 300
E-mail: esp_custserv@promega.com

Denmark, Estonia, Finland, Iceland, Norway, Sweden
Tel: +46 8 452 2450
Fax: +46 8 452 2459
E-mail: sweorder@promega.com

United Kingdom
Tel: +44 23 8076 0225
Fax: +44 23 8076 7014
Free Phone: 0800 378994
E-mail: ukcustserve@promega.com

Asia
China
Tel: +86 10 5825 6268
Fax: +86 10 5825 6160
Toll-Free: 800 810 8133
E-mail: info@promega.com.cn

Japan
Tel: 03 3669 7981
Fax: 03 3669 7982
E-mail: jpmktg@jp.promega.com

Korea
Tel: +82 2158 83718
Fax: +82 2262 85418
E-mail: CustServiceKR@promega.com

Pacific Asia Region, Singapore
Tel: +65 6513 3450
Fax: +65 6775 5210
E-mail: sg_custserv@promega.com

India
Tel: +91 11 43005814/15/16/17
Fax: +91 11 41035028
E-mail: ind_custserv@promega.com

Australia
Australia
Tel: 02 8338 3800
Fax: 02 8338 3855
Freecall: 1800 225123
Freepost: 1800 626 017
E-mail: auscustserv@promega.com

For more information about Promega Branch Offices and Distributors visit:
www.promega.com/support/worldwide-contacts