NanoLuc[®]: A Smaller, Brighter, and More Versatile Luciferase Reporter

O Promega

Terry L. Riss, Ph.D. Senior Product Specialist, Cell Health Promega Corporation

What is NanoLuc[™] Luciferase?

NanoLuc[™] (Nluc) is a 19.1 kDa, ATPindependent luciferase that utilizes a novel coelenterazine analog (furimazine) to produce high intensity, glow-type luminescence.

Evolution of NanoLuc from ocean to lab bench

Oplophorus gracilirostris first cataloged in 1881

130kDa *Oplophorus* luciferase 7X brighter than native *Renilla* Luciferase Shimomura, O., et al. (1978) 19kOluc 19kDa subunit is catalytic. Light output & stability compromised. Inouye, S., et al. (2000)

NanoLuc[™] is very small

Firefly (Fluc)
Renilla (Rluc)
NanoLuc[™] (Nluc)

Image: Comparison of the state of the stat

	Amino acids	M.W.	Mol. Vol. Å ³
Nluc	171	19.1	14
Rluc	312	36.0	32
Fluc	550	60.6	44

NanoLuc is very bright

Living HEK293 cells in 96-well plate (50,000 cells per well). Imaged by a hand-held iPhone

Purified enzyme

Expression in mammalian cells

O Promega

NanoLuc[™] has excellent physical properties

Thermal stable enzyme

- Retains activity following 30 min incubation at 55 °C
 - Melting temps: Nluc, 58 °C; Fluc, 31 °C

Active over broad pH range

- Fully active between pH 7-9
- Retains significant activity at pH 5-7
- Fluc: sharp decrease in activity below pH = 8

Monomeric enzyme

• Facilitates use as transcriptional reporter or fusion partner

No post-translational modifications detected in mammalian cells

No disulfide bonds

• Supports high levels of activity inside living cells

Uniform distribution in cells

No apparent compartmental bias in the absence of targeting sequences

unfused NLuc Immunofluorescence

Nano-Glo™ Luciferase Assay Reagent

Nano-Glo[™] Luciferase Assay Reagent: Furimazine

- Drovidos movim
 - Provides maximal brightness

Glow kinetics (no flash reaction)

 Half-life routinely >2 hour at room temperature

Low autoluminescence background

• Enhances assay sensitivity

Stable reconstituted reagent:

 ~10% decrease in activity over 8 hrs at RT

Add-Mix-Measure format like

- ONE-Glo[™] Luciferase Assay System
- Bright-Glo[™] Luciferase Assay System
- Steady-Glo[®] Luciferase Assay System
- Renilla-Glo[™] Luciferase Assay System

Reduced false hits with NanoLuc® Luciferase in HTS

LOPAC library (Sigma)

- Library of Pharmaceutically Active Compounds
- 1280 compounds
- Small organic ligands w/ well documented pharmacological activities
- Used to screen for nonspecific luciferase activity modulators

		Level of inhibition			
		≥ 10%	≥ 20%	≥ 30%	≥ 50%
% of library	NanoLuc	1.2%	0.5%	-	-
compounds	Firefly	1.9%	0.7%	0.5%	0.3%

Experimental details: LOPAC library members at 10 µM final concentration; incubation with purified NanoLuc or firefly luciferase for 2 min.; Fluc detection using ONE-Glo[™] Luciferase Assay..

3 Varieties of NanoLuc® Luciferase for you

Intracellular stability of NanoLuc[™] & Firefly

New protein synthesis blocked by addition of cycloheximide

Cell line	FLuc	FLucP	NLuc	NLucP
HEK-293	>6 h	2.0 ± 0.4 h	>6 h	18 ± 11 min
HeLa	3.8 ± 1.3 h	1.4 ± 0.2 h	>6 h	20 ± 6 min
U2OS (n=1)	>6 h	2.8 h	>6 h	36 min

Relative protein stability in cells: NlucP < FlucP < Fluc < Nluc

NlucP gives the greatest dynamic response

Experimental details: transient transfection of HEK293 cells with NF- κ B inducible constructs. rhTNF α treatment for 5 hours.

Brightness

Nluc > NlucP > Fluc > FlucP

(18 experiments)

NLuc 13-236 fold brighter than Fluc (79 fold avg.) NlucP 2-27 fold brighter than FLucP (10 fold avg.) Nluc 10-78 fold brighter than NlucP (34 fold avg.)

→Very similar pharmacology/EC50s

NlucP responds earliest to stimuli

Relative Response

NlucP > FlucP > Fluc > Nluc

Experimental details: transient transfection of HEK293 cells with NF κ B inducible constructs; addition of 100 ng/ml rhTNF α at time zero.

Summary: NanoLuc Luciferase as an intracellular reporter

- ✓ NlucP for a faster response
- ✓ NlucP for greatest dynamic range
- NlucP for measuring weak responses
- ✓ Nluc where maximum brightness is needed.

Should I switch from Firefly to NanoLuc[™] Luciferase? Promega

Does it allow you to do your work? Do you plan to do work in vivo?

Firefly is a great reporter

- ✓ Excellent signal:background
- ✓ Excellent dynamic range

We just released new response element signaling pathway detection pGL4 vectors:

ARE	HSE	ISRE	STAT5	SRE
p53	HRE	SIE	NFAT	SRF
ATF6	XRE	SBE	CRE	
MRE	AP1	TCF-LEF	NF-κΒ	

Should I switch from Firefly to NanoLuc[™] Luciferase? Promega

- Transfection efficiency limits you to easy-to-transfect cell lines
- Signals are too weak to move to 96-well plates
- ✓ FLuc is just too big

- The increased brightness could allow a subtle signal become a reliable signal.
- The small size could allow gene replacement with minimal impact, especially in viral constructs

3 Varieties of NanoLuc™ Luciferase for you

Secretion based format using secNluc

Experimental details: transient transfection of HEK293 cells with CREB inducible construct; addition of 10 μ M forskolin at time zero.

- Sample medium at multiple time points without cell lysis
 - Kinetic studies from the same set of wells
- Half-life of secNluc protein > 4 days at 37°C in medium
- Response dynamics similar to unfused Nluc
- Similar pharmacology vs. Nluc/NlucP

Gluc kits: bright, but high autoluminescence background

Gluc kits: high background limits sensitivity & dynamic range

Experimental details: HepG2 cells (DMEM +10% FBS) transiently transfected w/CMV promoter constructs; removal of aliquots after 22 hrs; n = 12 per treatment.

NanoLuc[™] Luciferase as a protein function probe

Applications of full-length NanoLuc[™] Luciferase.

NanoLuc[™] Luciferase as a fusion partner: Proof of concept experiments

Protein-Protein Interactions

NanoLuc[™] Luciferase excels in bioluminescent imaging applications

Nluc brightness leads to short exposure times:

- Fluc/Rluc: 1-5min/exposure
- Nluc: 1-5sec/exposure

Why bother? Fluorescence works.

- Fluors are susceptible to photobleaching.
- Excitation can cause autofluorescence of other fluors
- Luciferases will generate light as long as substrate is available

Olympus LV200 Bioluminescence Imager

NanoLuc is well behaved in mammalian cells

O Promega

 Uniform intracellular distribution

 No post-translational Intensity % of Major Peak modifications 19714 M.W. Da 19669.3 1.54E6 5.5 19699.3 2.51E6 9.0 19714.3 2.78E7 9.0 19736.3 2.50E6 19753.3 1.28E6 4.6 Expression in HEK cells -45 Da -16 Da +22 Da +45 Da B19738.30 10880 3 19753.35 philitian 19780 19800 19714 M.W. Da Intensity % of Major Peak 19699.3 2.03E7 8.4 19714.3 2.41E8 19730.3 2.27E7 9.4 19747.3 9.60E6 4.0 Expression in E. coli -15 Da +16 Da +33 Da how when the second 25

NanoLuc[™] Fusions can be designed to go anywhere Prom

NanoLuc[™] Luciferase fusions could be a useful tool to investigate cell biology

Bioluminescence imaging of protein translocation

cytoplasm \rightarrow nucleus

Time lapse: 13 minutes

NanoLuc fusion to Glucocorticoid Receptor

HeLa cells; 500nM dexamethasone treatment

NanoLuc[™] Luciferase as a fusion partner: Proof of concept experiments

Protein-Protein Interactions

Monitoring Protein Stability with NanoLuc™ Luciferase

NanoLuc[™] Luciferase can be added to a protein as a probe for protein stability.

The fusion can be used as a probe of stability

NanoLuc[™] Luciferase as a fusion partner: Proof of concept experiments

Protein-Protein Interactions

Bioluminescence Resonance Energy Transfer (BRET)

Aequorea victoria Renilla reniformis Cuciferase Donor Luciferase Donor Luciferase Donor Signal

Requirements for BRET:

- Donor & Acceptor must be close (10-100 Å)
- Donor emission spectrum must overlap with Acceptor excitation spectrum

first described by C.H. Johnson & colleagues in 1999 32

Could NanoLuc™ work better as a BRET donor?

BRET-beneficial properties of NanoLuc Luciferase:

100x brighter than Rluc...

- ✓ less spectral overlap of Donor & Acceptor needed
- ✓ Better S:B and dynamic range

Blue-shifted emission...

✓ Lots of space on the spectrum for the Fluor Acceptor

Nluc 460nm; Rluc 480nm; Fluc 560nm

We have a potential acceptor fusion protein:

O Promega

35

HaloTag technology – affinity tag alternative

Protein-mediated covalent attachment:

- Strong binding covalent bond is essentially irreversible
- High specificity modified catalytic mechanism
- High binding rate optimized protein structure

Multiple uses with one genetic construct

NanoLuc[™] Luciferase as a fusion partner: Proof of concept experiments

Protein-Protein Interactions

Biosensor: Disrupting BRET with a cleavable bridging peptide sequence

NanoLuc[™] Luciferase as a fusion partner: Proof of concept experiments

Protein-Protein Interactions

Can NLuc: HT Pair be used for Protein-Protein BRET? Promega

Same model system used with BRET 6 System

RLuc8.6 \rightarrow **TurboFP**

Dragulescu-Andrasi, A., et al (2011) *PNAS* **108**, 12060-5.

BRET assay for detecting bromodomain interactions with histones

Measuring effect of BET inhibitor on histone-bromodomain interactions

IC50 = 222.8 nM

100

JQ1 [nM]

10000

1

0.005

0.01

Histone H3.3-HaloTag

0.006-

0.01

1

100

JQ1 [nM]

10000

1000000

O Promega

Glucorticoid Receptor Dimerization

Bright Future for NanoLuc™ Luciferase fusions

Brightness improves bioluminescent imaging

Versatility to go anywhere in cell

Versatility to allow stability measurements

Brightness allows BRET with HaloTag[®] Fusions

- Biosensors
- Protein:Protein Interactions

Brightness allows BRET with fluorescent ligands

• Ligand binding assays

Nano-Glo™ Luciferase Assay System

Cat # N1110: 10ml (100 assays)

- 200µl Nano-Glo™ Luciferase Assay Substrate
- 10ml Nano-Glo[™] Luciferase Assay Buffer

Cat # N1130 10x10ml (1,000 assays)

- 10 x 200µl Nano-Glo™ Luciferase Assay Substrate
- 10 x 10ml Nano-Glo[™] Luciferase Assay Buffer

Cat.# N1120 100ml (1,000 assays)

- 2 x 1ml Nano-Glo[™] Luciferase Assay Substrate
- 100ml Nano-Glo™ Luciferase Assay Buffer

Cat.# N1150 10x100ml (10,000 assays)

- 5 x 4ml Nano-Glo[™] Luciferase Assay Substrate
- 10 x 100ml Nano-Glo[™] Luciferase Assay Buffer

Just make enough 1X Nano-Glo Assay Reagent from the 50X substrate and buffer to meet your needs. No need to make up all the reagent at once.

Currently Available Vectors

The pNL vectors are built on the pGL4 Vector backbone allowing transfer of inserts from pGL4 series vectors to the pNL vectors.

Plasmid	Reporter	Marker	Promoter	MCS	Catalog #
pNL1.1	Nluc	-	-	Y	N1001
pNL1.2	NlucP	-	-	Y	N1011
pNL1.3	secNluc	-	-	Y	N1021
pNL2.1	Nluc	Hygro	-	Y	N1061
pNL2.2	NlucP	Hygro	-	Y	N1071
pNL2.3	secNluc	Hygro	-	Y	N1081
pNL3.1	Nluc	Hygro	minP	Y	N1031
pNL3.2	NlucP	-	minP	Y	N1041
pNL3.3	secNluc	-	minP	Y	N1051
pNL1.1.CMV	Nluc	-	CMV	Ν	N1091
pNL1.3.CMV	secNluc	-	CMV	Ν	N1101
pNL3.2. NF-κB-RE	NlucP	Hygro	NF-κB- RE/minP	Ν	N1111

Want to know what vectors are coming?

New vectors using Promega exclusive technologies are typically offered as a custom product before they become a catalog product.

Visit the Current Research Materials page at:

www.promega.com/cam

Stay on the cutting edge and get research tools before they are available to everyone!

You can also request construction of a special vector to meet your exact needs with *Custom Assay Services*

Enzyme Design

Keith Wood <u>Substrate Design</u> Poncho Meisenheimer James Unch Ruslan Arbit Hui Wang Dieter Klaubert Lance Encell Monika Wood Mary Hall Kris Zimmerman Paul Otto Hélène Benink Gedi Vidugiris Mike Slater

Brock Binkowski **Braeden Butler** Mike Valley Matt Robers Thomas Machleidt Chris Eggers Frank Fan **Danette Daniels** Marie Schwinn Jacqui Mendez

Applications

Questions Welcome