Assaying Organotypic 3D Microtissue Models

Tour of the Prom’s
Dr. Jens M. Kelm, CSO and co-founder
Lack of efficacy and toxicity are still the main reason’s of high attrition rates.
'Why 3D?' Such sessions are a thing of the past now because there is an accumulating body of evidence - joined by the recent article from Leslie and colleagues - demonstrating the importance and utility of 3D culture systems to discover and model biological process with in vivo relevance.

Editorial “3D culture reveals a signaling network”
Senthil K Muthuswamy
Breast Cancer Research, 2011
Better in vitro Biology

Drug-Target interactions

Drug – Cell response

Drug – Tissue response

Drug – Organism response

High failure rate

Reducing failure rate
Advancing cell-based assays

Resembling native-like cell functionality to improve predictive power of cell-based assays.
3D Microtissue culture in hanging drops

Seeding
Medium/air interface

After 1 hour
Cells

After 2-4 days
Medium

Tumor tissue
Microtissue Formation
Size Reproducibility

HCT116-colon cancer MTs

± 1.48 μm ± 7.44 μm ± 8.79 μm
Microtissue analysis in specific spheroid assay plates (GravityTRAP™)
Microtissue Models: From Discovery to Safety

- Tumor
- Islets
- Vasculature
- Cartilage
- Liver
- Brain
- Bone
- Epithelial Barrier
- Heart
- Kidney
- Skin
- Ganglia
Drug discovery

TUMOR MICROTISSUES
Spheroid cell heterogeneity

Native tumor

- Secondary necrosis

Spheroid model

- Heterogeneous cell population
- Diffusion required
- High levels of ECM

Adapted from Friedrich J. Int J Radiat Biol. 2007 Nov-Dec;83(11-12):849-71.
Tumor spheroid expression profile closer to in vivo

Hierarchical cluster analysis of OV-90 (ovarian cancer cell line) expression data grown in different conditions

- **L**: monolayer culture
- **S**: spheroid cultures
- **TSC**: tumors from subcutaneous xenografts
- **TIP**: tumors from intraperitoneal xenografts
- **LSC** and **LIP**: monolayer cultures derived from these tumors

A 3D Filter can significantly reduce the number of candidates

Screening for apoptosis inducer

10’000 cpds → HCT116, colon cancer
382 cpds → 2D screen 25 uM, 72h
40 cpds → 3D screen 25 uM, 72h
11 cpds → 3D screen 12.5 uM, 72h

Fayad et al. 2011
Example of a 3D filter

Screening for an apoptosis inducer

Fayad et al. 2011
Biochemical assays evaluated with InSphero’s microtissues:

<table>
<thead>
<tr>
<th>Lytic Assays</th>
<th>Non-Lytic Assays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Viability</td>
<td>Redox State</td>
</tr>
<tr>
<td>CellTiter-Glo*</td>
<td>GSH/GSSG-Glo*</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>Metabolism</td>
</tr>
<tr>
<td>Caspase-3/7 Glo*</td>
<td>Cell Death/Growth</td>
</tr>
<tr>
<td></td>
<td>CytoTox-ONE*</td>
</tr>
<tr>
<td></td>
<td>Cell Death</td>
</tr>
<tr>
<td></td>
<td>NanoLuc</td>
</tr>
</tbody>
</table>

CellTiter-Glo, *GSH/GSSG-Glo*, *Caspase-3/7 Glo*,
The holy grail of lytic assays for microtissues: Tissue Disruption

Fluorescence activity (RFU)

- human liver MTs
- rat liver MTs

Buffers:
- Buffer 1
- Buffer 2
- Buffer 3
- Buffer 4
- Buffer 5
- PBS

www.insphero.com | Tour of the Prom’s - Lausanne | 13.03.2013
Cell number assessment in microtissues

Assay: PicoGreen
Model: NIH3T3

Calibration curve with single cell suspension (input cell population)

\[y = 1.6265x \]
\[R^2 = 0.9686 \]
Cell viability: ATP

Model: SNB-19 human glioblastoma cells

CellTiter-Glo protocol optimization
- 3X pipet mix at CTG Reagent add’n
- 20 min incubation prior to read

- Varied cell number at inoculation
- Day 4 → MT transferred for study

Graph showing ATP per microtissue vs cell number at inoculation.
Caspase 3/7: Critical Time Window

IC50: 0.31uM
Apoptosis: Caspase 3/7 activity

Model: 3D Insight rat liver microtissue

Caspase 3/7 activity

RLU/microtissue vs. Staurosporin treatment (4h, 24h, 48h)
Drug discovery

DISCRIMINATING DRUG EFFECTS IN MULTI-CELL TYPE MICROTISSUES

In collaboration with:

Pomega Ltd., Madison US and Dübendorf CH
Sirion Biotech GmbH, Munich
Tecan Austria GmbH, Grödig
Colon cancer co-culture

NIH3T3-tGFP : HCT116-NanoLuc
Monitoring distinct cell populations in a co-culture model

HCT116Luc

NIH3T3RFP

NIH3T3RFP:HCT116Luc

NIH3T3RFP:HCT116Luc
IC50 determination in co-culture systems

<table>
<thead>
<tr>
<th>Compound</th>
<th>ATP [µM]</th>
<th>nanoLuc [µM]</th>
<th>RFP [µM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS</td>
<td>1,25</td>
<td>1,23</td>
<td>n.d.</td>
</tr>
<tr>
<td>CIS</td>
<td>>500</td>
<td>>500</td>
<td>n.d.</td>
</tr>
<tr>
<td>TAX</td>
<td>1,08</td>
<td>0,50</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

STS

- **DMSO**
 - 0,16 uM
 - 0,63 uM
 - 2,5 uM

CIS

- **DMSO**
 - 15,6 uM
 - 62,5 uM
 - 250 uM

TAX

- **DMSO**
 - 0,01 uM
 - 0,2 uM
 - 2,5 uM
Pre-clinical safety

LIVER MICROTISSUES
3D InSight™ rat liver microtissues

Immunofluorescence image of rat hepatocytes co-cultured with non parenchymal cells (NPC). Green: DPP-IV (bile canalicular marker), blue: DAPI, red: ICAM-1 (endothelial marker)

In collaboration with Jan Hengstler and Seddik Hammad
3D InSight™ human liver microtissues

Cryopreserved Hepatocytes

Production in GravityPLUS

Assaying in GTRAP

Cryopreserved NPCs
Acetaminophen-induced liver microtissue toxicity
Metabolic activity of human liver microtissues

CYP3A4-induction

- DMSO control
- 20 uM Rif, 48h

RLU

hLiMT - NPC

hLiMT + NPC
Correct Prediction of Toxicity Where Classical Methods Fail

Endpoint: ATP content

Colchicine

HepG2-monolayer

MEC: >10 μM

Hepatocyte monolayer

MEC: >10 μM

Human liver microtissue

MEC: 10 μM
Pre-clinical safety

INFLAMMATION-MEDIATED LIVER TOXICITY
Kupffer-Macrophages are incorporated in rLiMTs

In collaboration with Marianne Uteng, Pierre Moulin, and Francois Pognan, Novartis Pharma Basel

Nuclei: 405 Dapi
Kupffer macrophages: rat CD68
Bile canalicule: DPPIV
Morphological characterization of human liver microtissues

CK8

CD68

IL-6 secretion

48h LPS-treatment (10ug/ml)

IL-6 (pg/well)

hLiMT - NPC

hLiMT + NPC
Why did we develop InSphero’s 3D models?

Example: Trovan (Pfizer)

Introduction in 1997

2.5 million prescriptions
4 patients needed liver transplantation
6 patients died

→ Withdrawn 1998

Estimated loss for Pfizer: US$ 8.5 billion

Trovan toxicity was not detected in-vitro
Inflammation-mediated idiosyncratic trovafloxacin toxicity rLi^{MT}

Trovafoxacin/Levofloxacin treatment
Readout: Released LDH (Cytotox-Glo, Promega)
Inflammation-mediated idiosyncratic trovafloxacin toxicity hLiMT

Trovaflroxacin/Levofoxacin treatment
Readout: Released LDH (Cytotox-Glo, Promega)
Acknowledgements

Dr. Terry Riss
Joanna Stevenson
Kevin Kopish
Dr. Dan Lazar

Dr. Christian Thirion
Dr. Michael Salomon

Dr. Jacob Tesdorpf
Dr. Karin Boettcher
Stefan Letzsch
Frauke Hänel

Helen Gill
Paul Walker

Dr. Claudio Thoma
Prof. Dr. Wilhelm Krek

Christian Oberdanner
Questions Welcome

Jens.kelm@insphero.com