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Introduction 

In forensic investigations, there is a great need for techniques to derive information about an unidentified 
person directly from biological material.  Traditional DNA forensics treats DNA like a fingerprint, using 
short tandem repeats (STRs) to match a DNA sample to a suspect or a database.  However, when no 
suspect has been identified and there are no database hits, these markers cannot tell investigators 
anything new about the person who left a particular DNA sample.  Other markers in the genome, known 
as single nucleotide polymorphisms (SNPs), are actual changes in the DNA sequence at a particular site.  
These types of sequence differences between individuals can affect the functioning or expression of 
proteins, thus forming the blueprint for changes in a person’s traits, including physical appearance.  
Millions of SNPs can be genotyped in a single assay using genome-wide microarray genotyping.  DNA 
phenotyping refers to the prediction of an unknown person’s biogeographic ancestry and/or physical traits 
from SNP data.  Such predicted phenotypic information can be used to generate investigative leads, 
narrow suspect lists, and aid in the identification of human remains.  This paper discusses the 
development of the Parabon

®
 Snapshot

™
 DNA Phenotyping System (“Snapshot”), which was built over 

the past four years with funding from the US Department of Defense and is now in active use by law 
enforcement. 

 

Biogeographic Ancestry Inference 

While human genetic variation is continuous across the world, there are genuine genetic differences 
between populations that can be detected using high-dimensional SNP data.  Snapshot uses two distinct 
approaches for ancestry inference, principal component analysis and statistical clustering, both of which 
are performed at global and regional scales.  Both require a database of reference DNA samples with 
well-defined ancestry, and thousands of subjects have been collected from populations around the world 
for this purpose. 
 
Principal component analysis (PCA) combines correlated variables into a smaller set of uncorrelated 
variables that explain much of the variance present in the original data.  Figure 1A shows the first two 
principal components (PCs) of global human genetic variation.  Each point represents a single individual 
in the reference database, with location on the plot determined solely by their DNA, after which the points 
were colored according to the subject’s known ancestry.  Individuals with admixed backgrounds (African-
American and Latino in this plot) show ancestry intermediate between the parent groups 
(African/European and Native American/European, respectively).  In this way, it is possible to localize an 
unknown person to a broad population group by projecting his or her genotypes onto these PCs.   
 
Principal component analysis can also be performed at a regional scale, as long as the populations are 
genetically distinct.  Figure 1B shows a PC plot for only European individuals.  While individuals from the 
various regions grade into one another, different geographic regions cluster in different parts of the plot.  
For Snapshot, regional PC analysis is performed within each continental group (or within several, if the 
subject is highly admixed), depending on the global ancestry determined in the first round of testing, 
further localizing an unknown subject within a region. 
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Figure 1: Plot of the first two principal components of 
ancestry, derived from tens of thousands of SNPs A) 
on a global scale and B) within Europe.  Each point 

represents a single subject, and the color shows which 
population that subject came from.  The crosshairs 
shows the location of an unknown person’s DNA 
plotted onto these axes.  

 
In addition to PCA, Snapshot also uses statistical clustering to assess ancestry.  In this approach, a 
reference database of subjects is used to define a set of populations, against which an unknown subject’s 
DNA is compared to determine its proportional membership in each.  This explicitly allows for admixture, 
even between populations that have not previously been observed.  In the first round of analysis, subjects 
from around the world are included (Figure 2A).  In the second round, only subjects from the inferred 
continent(s) are included (Figure 2B).  Significantly, this analysis can be performed even if the subject is 
admixed.  For example, given a child of one East Asian parent and one European parent, this analysis 
can still determine which region of East Asia that ancestry comes from. 

 

 

 

 

 

Figure 2: Snapshot 

ancestry predictions for 
two subjects at the A) 
global and B) regional 

scales.  Only regional 
populations with >5% 
ancestry are included.  
Subject 1 is Northwest 
European, and Subject 
2 is admixed, with one 
Japanese parent and 
one Latino parent. 
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Data Mining and Predictive Modeling 

For each phenotype, a database was assembled that included genotypes from hundreds of thousands of 
SNPs and phenotype on each subject.  Pigmentation phenotypes were scored from lightest to darkest 
according to the subject’s self-described coloration (Table 1).   

Table 1: Trait values for each pigmentation phenotype. 

 1 2 3 4 5 
Skin Color Very Fair Fair Light Olive Dark Olive Dark 
Eye Color Blue Green Hazel Brown Black 
Hair Color Red Blond Brown Black  
Freckling None Few Some Many  

 
Three-dimensional face morphology data was collected and converted to (x,y,z) coordinates for 7,150 
quasi-landmarks on each face, for a total of 21,450 variables.  PCA was performed on this data to 
construct a lower-dimensional “face space” that described the majority of variation among faces (Figure 
3).  Position along each PC was then used as a series of phenotypes.  Subjects from all ethnic 
backgrounds were included, and phenotypes were corrected for sex and the principal components of 
ancestry.   

 

Figure 3: Schematic of the first 5 

principal components of facial variation 
in subjects of all sexes and ancestries.  
Along each dimension, the two 
endpoints are shown.  At right are heat 
maps showing the relative magnitude 
of the effect of each PC on each part of 
the face, where red is a large effect 
and blue is no effect. 

To build predictive models for these forensic phenotypes, an enhanced genome-wide association study 
(GWAS) approach was used.  Each SNP was assessed for its association with phenotype using linear 
regression and assigned a p-value based on the strength of association.  In addition to this single-SNP 
association testing, each phenotype was also evaluated for non-additive interactions among SNPs, 
known as epistasis.  Searches for high-order epistasis at a genome-wide scale are extraordinarily 
computationally intensive, involving a search space that simply cannot be exhausted.  Parabon has 
developed Crush, a software application that uses a distributed evolutionary search algorithm [1] to 
efficiently search for epistasis.  Each set of SNPs examined is evaluated for joint association with 
phenotype using multifactor dimensionality reduction (MDR) [2].  MDR is as an alternative to regression, 
which has low statistical power when some genotype combinations are not seen in the data, as is often 
the case in high-dimensional interactions.   
 
The top SNPs from this data mining were carried forward to predictive modeling.  Sex, ancestry PCs, and 
SNP genotypes were combined in a machine learning model for each phenotype.  Model parameters 
were optimized across cross-validation (CV) folds using a custom evolutionary search algorithm.  The 
best parameters were then used to build the final model.  Within each CV fold, the machine learning 
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model was used to make predictions on the 10% test set that had been held out.  These out-of-sample 
predictions were used to assess the accuracy of the model.   
 
This entire data mining and predictive modeling process takes place within a ten-fold cross-validation 
(CV) framework.  Thus, each of these steps was performed eleven times for each phenotype: once in 
each of the ten CV folds, using only the 90% training set in that fold, and once at the end, using the entire 
dataset.  The model produced in each CV fold was used to make predictions on the remaining 10% of the 
data, which were then evaluated for accuracy.  At the end of the process, a final model was built using the 
entire dataset.  This model’s prediction accuracy on new samples can be expected to be approximately 
the same as the accuracy across the ten CV folds [3]. 

Prediction on New Samples 

Machine learning produces predictions that are a single value, which must then be interpreted statistically 
to convert them to phenotype predictions.  The cross-validation results provide a framework for doing so 
and then placing confidence statements on each prediction.  Snapshot compares a new, unknown 
person’s prediction to those made on subjects with known phenotype.  The prediction value is evaluated 
for its consistency with each possible phenotype category for that trait (e.g., blue, green, hazel, brown, 
and black for eye color) based on the distribution of prediction values observed for that category during 
CV.  These consistency values can then be converted to confidence statements, and categories with <5% 
consistency can be excluded with very high confidence (Figure 4). 
 

 

Figure 4: Example of a 

Snapshot eye color 
phenotype prediction, along 
with consistency values for 
each possible trait value 
(blue, green, hazel, brown, 
and black) and confidence 
statements for each 
prediction. 
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Age and BMI are not currently available from DNA, so predictions must be made in the absence 
of this information.  Therefore, face morphology predictions are made at a standard age of 25 and a body 
mass index (BMI) of 22, which is the middle of the “normal” range.  These predictions are solely of 
underlying facial structure, not of the texture of the skin or the appearance of facial features such as 
eyebrows or hairline.  Thus, to emphasize the parts of the face that are distinctive, the prediction is 
compared to CV predictions made on subjects with the same sex and major continental ancestry.  These 
comparisons are visualized as heat maps, which show the parts of the face that are changing in each 
spatial dimension (Figure 5).   
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Figure 5: Heat maps comparing the face morphology prediction for an unknown individual to the average 
prediction for subjects with the same sex and ancestry in the A) X, B) Y, and C) Z dimensions.  Intensities are 

relative within each heat map; red is an increase, and blue is a decrease. 

 
 
Forensic Casework 

Snapshot DNA phenotyping is now being actively used in forensic casework.  Numerous additional 
challenges are encountered when analyzing forensic samples.  Genotype data for Snapshot is generated 
on an Illumina

®
 microarray scanner, which was designed for clinical use, and thus suggests input of at 

least 200 ng of high-quality DNA to ensure 100% call rate.  Parabon and others have performed testing of 
this SNP technology using forensic quantities of DNA and have demonstrated that very high call rates 
(~98%) can be obtained from 2.5 ng of DNA, and even 1 ng of DNA can generate call rates near 95%.  
These results deliver sufficient SNPs for Snapshot to make predictions.  However, the missing SNPs 
must be accounted for.  Snapshot uses a machine learning method that allows for missing data, which 
many do not, so having no-calls at some SNPs still allows predictions to be made.  For each case, the CV 
predictions are recalculated assuming that only that particular set of SNPs was available in the test sets.  
This ensures that phenotype predictions and confidence statements are based on relevant comparisons.  
In addition to issues with DNA quantity, forensic cases also often have low DNA quality due to 
degradation and/or mixing with another individual.  These can both lead to decreased call rate and an 
inability to make accurate predictions.  To accommodate such samples, Parabon is actively researching 
laboratory techniques to repair degraded DNA samples and is developing computational approaches for 
deconvoluting mixtures using microarray genotype data. 
 

Distant Kinship 

A novel kinship capability was developed that utilizes the massive amounts of data generated by SNP 
arrays.  This method was built using a database of ~1,400 subjects from a range of populations with 
known relationships, out to 7th-degree relatives.  New measures of pairwise similarity between a pair of 
genomes were calculated, and these were used as input variables to a machine learning model that 
predicts degree of relatedness.  As with other Snapshot models, this model was built using cross-
validation, and the results are shown in Figure 6.  Critically, unrelated pairs could be distinguished from 
even distantly-related pairs with extremely high accuracy.  This capability can be applied to remains 
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identification when immediate relatives are not available or to ascertain any relatedness between DNA 
samples recovered at a crime scene. 

 

Figure 6: Cross-validation results for 

Snapshot’s distant kinship prediction model.  
Absolute accuracy refers to correct 
prediction of the exact degree of 
relatedness, as opposed to accuracy within 
one degree. 

 
Conclusion 

DNA phenotyping represents a new way for investigators to use forensic DNA to generate investigative 
leads or learn additional information about unidentified remains.  Parabon has developed the Snapshot 
DNA Phenotyping System, which makes highly accurate predictions about biogeographic ancestry, eye 
color, hair color, skin color, freckling, and face morphology.  Snapshot is offered as a service to law 
enforcement and is actively being used in casework. 
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