Apo-ONE® Homogeneous Caspase-3/7 Assay

INSTRUCTIONS FOR USE OF PRODUCTS G7790, G7791, AND G7792.
Apo-ONE® Homogeneous Caspase-3/7 Assay

All technical literature is available on the Internet at www.promega.com/tbs
Please visit the web site to verify that you are using the most current version of this Technical Bulletin. Please contact Promega Technical Services if you have questions on use of this system. E-mail techserv@promega.com.

1. Description ... 2
2. Product Components and Storage Conditions ... 7
3. Reagent Preparation .. 8
4. Detection of Caspase-3/7 Activity in Cell Culture 8
 A. Assay Conditions .. 8
 B. Standard Assay (96-well, 200 μl final reaction volume) 9
5. Detection of Caspase-3 or -7 Activity in Purified Caspase Preparations 10
 A. Assay Conditions .. 10
 B. Standard Assay (96-well, 200 μl final reaction volume) 10
6. Positive and Negative Cell Culture Controls .. 12
 Example: Analysis of Caspase Activity in Jurkat Cells Treated with Anti-Fas Antibody 12
7. Purified Enzyme Analysis ... 13
 Example: Determination of IC₅₀ for Caspase-3 with Ac-DEVD-CHO 13
8. Calculation of Caspase-3/7 Activity .. 14
9. Apo-ONE® Assays Using the Beckman Coulter Biomek® 2000 and Biomek® FX Laboratory Automation Workstations ... 14
10. References .. 15
11. Related Products .. 16
1. Description

The Apo-ONE® Homogeneous Caspase-3/7 Assay provides the necessary reagents for fast and sensitive measurement of the activities of caspase-3 and -7. These members of the cysteine aspartic acid-specific protease (caspase) family play key effector roles in apoptosis in mammalian cells (1–4). The Apo-ONE® Homogeneous Caspase-3/7 Assay provides a profluorescent substrate with an optimized bifunctional cell lysis/activity buffer for caspase-3/7 (DEVDase) activity assays. This assay can be flexibly configured for use in high-throughput systems. Figure 1 illustrates the simple “add, mix and read” format of this assay.

![Diagram of assay protocol]

Figure 1. Schematic overview of the Apo-ONE® Homogeneous Caspase-3/7 Assay protocol. This assay is easily adaptable to a 384-well format.

Note: Extended mixing times using a plate shaker are often unnecessary but may be beneficial particularly when using cell-based systems.
Induction of apoptosis and activation of caspases can result from a variety of stimuli including growth factor withdrawal, exposure to radiation or chemotherapeutic agents, or initiation of the Fas/Apo-1 receptor-mediated cell death process. Active caspases participate in a cascade of cleavage events that disable key homeostatic and repair enzymes and bring about systematic structural disassembly of dying cells. The biological substrates of caspases include poly-(ADP ribose) polymerase (PARP), DNA-dependent protein kinase (DNA-PK), lamins, topoisomerases, Gas2, protein kinase C (PKC), sterol regulatory element binding proteins (SREBP), U1-70kDa protein and Huntingtin protein (5–8).

Recent research has identified many mammalian homologs of CED-3, a pro-apoptotic gene of *C. elegans* and caspase family member (9–11). Caspase 3-like proteases show specificity for cleavage at the C-terminal side of the aspartate residue of the sequence DEVD (Asp-Glu-Val-Asp) and are inhibited by the tetrapeptide inhibitor Ac-DEVD-CHO (2).

Note: The DEVD peptide sequence is recognized by both caspase-3 and caspase-7.

Assay Principle

The Apo-ONE® Homogeneous Caspase-3/7 Buffer rapidly and efficiently lyses/permeabilizes cultured mammalian cells and supports optimal caspase-3/7 enzymatic activity. The caspase-3/7 substrate rhodamine 110, bis-(N-CBZ-L-aspartyl-L-glutamyl-L-valyl-L-aspartic acid amide; Z-DEVD-R110), exists as a profluorescent substrate prior to the assay. To perform the Apo-ONE® Homogeneous Caspase-3/7 Assay, the Buffer and Substrate are mixed and added to the sample. Upon sequential cleavage and removal of the DEVD peptides by caspase-3/7 activity and excitation at 499nm, the rhodamine 110 leaving group becomes intensely fluorescent (Figure 2). The emission maximum is 521nm (10).

![Figure 2. Cleavage of the non-fluorescent Caspase Substrate Z-DEVD-R110 by Caspase-3/7 to create the fluorescent Rhodamine 110.](image-url)
1. Description (continued)

The amount of fluorescent product generated is proportional to the amount of caspase-3/7 cleavage activity present in the sample. The Apo-ONE® Assay using the Z-DEVD-R110 Substrate is more sensitive over short incubation times than assays using the common Ac-DEVD-AMC substrate (Figure 3). The fluorescent product may be quantitated by comparison with standard concentrations of a rhodamine 110 reference standard (Molecular Probes Cat.# R-6479). Specific inhibition of caspase-3/7 activity may be achieved by the addition of Caspase Inhibitor Ac-DEVD-CHO (Cat.# G5961).

Figure 3. Sensitivity of the Apo-ONE® Homogeneous Caspase-3/7 Assay.
Apoptosis was induced in Jurkat cells by treatment with anti-Fas receptor antibody for 5 hours. Cells were serially diluted twofold into a 96-well plate. Apo-ONE® Homogeneous Caspase-3/7 Buffer containing either Z-DEVD-R110 or Ac-DEVD-AMC was added to the cells and incubated at room temperature. Z-DEVD-R110 data were collected on a fluorometer 1 hour post-addition. Ac-DEVD-AMC data were collected 18 hours post-addition. Because of inherent differences in the fluor signals, significantly different incubation times were required for the two substrates.
The ability to perform multiple assays on the same sample well provides valuable internal control data and saves the time and cost of duplicating cell culture setup. The Apo-ONE® Homogeneous Caspase-3/7 Assay can be multiplexed with the CellTiter-Blue® Cell Viability Assay or the CytoTox-ONE™ (LDH) Homogeneous Membrane Integrity Assay. The CellTiter-Blue® Assay is a fluorescent, homogeneous cell viability assay based on the reducing ability of cells to convert resazurin to resorufin. It does not lyse cells, and the excitation and emission wavelengths used (560 Ex/590 Em) are different than for the Apo-ONE® Assay, so it is possible to do both assays in the same well with only a modest reduction in Apo-ONE® Assay fluorescence signal (Figure 4). The CytoTox-ONE™ (LDH) Membrane Integrity Assay detects the release of lactate dehydrogenase from compromised cells and can be used as an indicator of necrosis. This assay can be performed using an aliquot of culture supernatant transferred to a second plate, while performing the Apo-ONE® Assay using the remaining cells.

Figure 4. Multiplexing two assays in the same well. Jurkat cells were treated with various concentrations of staurosporine. CellTiter-Blue® Reagent (20 μl) was added to each well immediately after drug addition for a final volume of 120 μl, and the cells were incubated for 5 hours prior to recording fluorescence (560 Ex/590 Em). Then caspase activity was measured in the same wells by adding 120 μl of the Apo-ONE® Caspase-3/7 Assay Reagent. Cells were incubated for an additional hour at ambient temperature prior to recording fluorescence (485 Ex/527 Em).
Advantages of the Apo-ONE® Homogeneous Caspase-3/7 Assay

Simple: A proprietary bifunctional cell lysis/activity buffer combined with the profluorescent substrate Z-DEVD-R110 results in a sensitive, single-reagent assay that is easily automated (Figure 1). The assay has been automated on the Beckman Coulter Biomek® 2000 and Biomek® FX Automation Workstations in both 96- and 384-well formats. For more information about obtaining automated protocols, see: www.promega.com/automethods/

Fast: Requires shorter incubation and no sample preparation compared to other apoptosis assays; incubate for as little as 30 minutes.

Sensitive: Detect caspase activity from as few as several hundred cells in a single assay (Figure 3).

Robust: The Z’-factor is a statistical value that compares the dynamic range of an assay to data variation in order to assess assay quality. Z’ factor values greater than 0.5 indicate excellent assay quality (12). The Apo-ONE® Homogeneous Caspase-3/7 Assay delivers excellent Z’-factors in cell and purified enzyme models (Figure 5).

Scalable: Simply maintain a 1:1 ratio of assay reagent volume to sample volume to perform from one to thousands of assays.

Flexible: Use with purified caspase enzyme (Figure 8); adherent, suspension or primary cell cultures (Figures 3, 4 and 7); or fresh tissue (13). Perform assays in a cuvette or in 96- or 384-well plates.

Figure 5. Z’-Factor analysis. HepG2 cells were plated in a 96-well plate at 20,000 cells per well and treated with staurosporine. A Z’-factor of >0.83 was obtained for the Apo-ONE® Assay.
2. Product Components and Storage Conditions

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apo-ONE® Homogeneous Caspase-3/7 Assay</td>
<td>1ml</td>
<td>G7792</td>
</tr>
</tbody>
</table>

Each system contains sufficient reagents to make 1ml of Apo-ONE® Caspase-3/7 Reagent (10 assays of 100μl/well in a 96-well plate or 40 assays of 25μl/well in a 384-well plate). Includes:

- 10μl Caspase Substrate Z-DEVD-R110 (100X)
- 1ml Apo-ONE® Homogeneous Caspase-3/7 Buffer

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apo-ONE® Homogeneous Caspase-3/7 Assay</td>
<td>10ml</td>
<td>G7790</td>
</tr>
</tbody>
</table>

Each system contains sufficient reagents to make 10ml of Apo-ONE® Caspase-3/7 Reagent (100 assays of 100μl/well in a 96-well plate or 400 assays of 25μl/well in a 384-well plate). Includes:

- 100μl Caspase Substrate Z-DEVD-R110 (100X)
- 10ml Apo-ONE® Homogeneous Caspase-3/7 Buffer

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apo-ONE® Homogeneous Caspase-3/7 Assay</td>
<td>100ml</td>
<td>G7791</td>
</tr>
</tbody>
</table>

Each system contains sufficient reagents to make 100ml of Apo-ONE® Caspase-3/7 Reagent (1,000 assays of 100μl/well in a 96-well plate or 4,000 assays of 25μl/well in a 384-well plate). Includes:

- 1ml Caspase Substrate Z-DEVD-R110 (100X)
- 100ml Apo-ONE® Homogeneous Caspase-3/7 Buffer

Storage and Stability: Store the Apo-ONE® Homogeneous Caspase-3/7 Assay, protected from light and moisture, at -20°C. Avoid multiple freeze-thaw cycles. Homogeneous Caspase-3/7 Reagent (Substrate diluted in Buffer) may be stored, protected from light, at 4°C for up to 24 hours.

Available Separately

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caspase Inhibitor Ac-DEVD-CHO</td>
<td>100μl</td>
<td>G5961</td>
</tr>
</tbody>
</table>

The Caspase Inhibitor Ac-DEVD-CHO should be added to samples prior to reagent addition.

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apo-ONE® Homogeneous Caspase-3/7 Buffer</td>
<td>100ml</td>
<td>G7781</td>
</tr>
</tbody>
</table>
3. Reagent Preparation

Please read the protocol thoroughly before beginning. Directions are given for performing the assay in a total volume of 200μl using 96-well plates and a fluorescence plate reader. However, the assay can be easily adapted to different volumes providing that the 1:1 ratio of Homogeneous Caspase-3/7 Reagent volume to sample volume is preserved (e.g., 25μl of sample + 25μl Apo-ONE® Caspase-3/7 Reagent). This assay is easily adaptable to a 384-well format.

Materials to be Supplied by the User

• 96- or 384-well opaque white or black plate suitable for cell culture (Nalge Nunc International has FluoroNunc™ Products for such applications)
• fluorescent plate reader (e.g., LabSystems Cat.# 9502887 or equivalent)
• single and multichannel pipettors
• plate shaker

Thaw the 100X Substrate and Buffer to room temperature. Mix by inversion or vortexing. Dilute the Substrate 1:100 with the Buffer to obtain the desired volume of Apo-ONE® Caspase-3/7 Reagent (e.g., 100μl of 100X Substrate to 9,900μl Buffer). Store the Apo-ONE® Homogeneous Caspase-3/7 Reagent, protected from light, at 4°C for up to 24 hours until use. Do not freeze and store the Apo-ONE® Caspase-3/7 Reagent. Avoid multiple freeze-thaw cycles of the Substrate and Buffer.

4. Detection of Caspase-3/7 Activity in Cell Culture

4.A. Assay Conditions

Prepare the following reactions to detect caspase-3/7 activity in cell culture:

• Blank. Apo-ONE® Caspase-3/7 Reagent + cell culture medium without cells.
• Negative Control. Apo-ONE® Caspase-3/7 Reagent + vehicle-treated cell culture.
• Assay. Apo-ONE® Caspase-3/7 Reagent + treated cell culture.

The blank control is used as a measure of background fluorescence associated with the culture system and Apo-ONE® Caspase-3/7 Reagent and should be subtracted from experimental values. Negative control reactions are useful for determining the basal caspase activity of the cell culture system. An example of the analysis of treated and/or induced cells is given in Section 6. “Vehicle” refers to the solvent used to dissolve the drug or protein of interest.

Notes:

1. Prior to starting the assay, prepare the Apo-ONE® Caspase-3/7 Reagent as described in Section 3, and mix thoroughly.
2. For best results, empirical determination of the optimal cell number, apoptosis induction treatment and incubation period for the cell culture system may be necessary.
3. Use identical cell numbers and volumes for the assay and the negative control samples.

4. Do not mix Apo-ONE® Caspase-3/7 Reagent and samples by manual pipetting. Mixing in this manner is unnecessary and may create bubbles that interfere with fluorescence readings or cross-contaminate the samples. Gentle mixing may be performed using a plate shaker.

5. Total incubation time for the assay depends upon the amount of caspase-3/7 present in the sample. Minimal apoptotic induction and low cell number may require an extended incubation period. Maximum recommended incubation time is 18 hours.

6. The Apo-ONE® Caspase-3/7 Reagent was formulated to mediate cellular lysis and support optimal caspase-3/7 activity. In rare instances, the reagent does not affect complete lysis of cultured cells. In such cases, lysis is enhanced by a freeze-thaw cycle. For best results, freeze at -70°C, then thaw at room temperature. After equilibration, mix to homogeneity and incubate until measurable fluorescence is achieved.

4.B. Standard Assay (96-well, 200μl final reaction volume)

1. Add 100μl of Apo-ONE® Caspase-3/7 Reagent to each well of a white or black 96-well plate containing 100μl of blank, control or cells in culture. If reusing tips, be careful not to touch pipette tips to the wells containing samples to avoid cross-contamination. Perform blank and negative controls in triplicate. Cover the plate with a plate sealer if incubating for extended periods (>4 hours).

Note: To perform this assay in a 384-well plate, simply maintain the 1:1 volume ratio of Apo-ONE® Caspase-3/7 Reagent to sample. Adjust the total reaction volume such that the bottom of the well is covered but liquid does not splash out of the well during the assay.

2. Gently mix contents of wells using a plate shaker at 300–500rpm from 30 seconds up to read time. Incubate at room temperature for 30 minutes to 18 hours depending upon expected level of apoptosis (and thus caspase-3/7 activity) in the cells analyzed. The optimal incubation period should be determined empirically.

3. Measure the fluorescence of each well. The optimal excitation wavelength for detection is 499nm with emission maximum at a wavelength of 521nm (10). This protocol was developed using a spectrofluorometer configured to detect caspase-3/7 activity at an excitation wavelength range of 485 ± 20nm and an emission wavelength range of 530 ± 25nm. Fluorescence measurements should be determined empirically and should be completed within 18 hours.
5. Detection of Caspase-3 or -7 Activity in Purified Caspase Preparations

5.A. Assay Conditions

Prepare the following reactions to detect caspase-3 or -7 activity (or inhibition of activity) in purified enzyme preparations:

- **Blank.** Apo-ONE® Caspase-3/7 Reagent + vehicle control for enzyme treatment agent or inhibitor, if used.
- **Positive Control.** Apo-ONE® Caspase-3/7 Reagent + vehicle control + purified caspase-3 or -7 enzyme.
- **Assay.** Apo-ONE® Caspase-3/7 Reagent + treatment agent + purified caspase-3 or -7 enzyme.

The blank is used as a measure of any background fluorescence associated with the treatment agent vehicle and Apo-ONE® Caspase-3/7 Reagent and should be subtracted from experimental values. The positive control is used as a maximal fluorescence (rate or endpoint relative fluorescent unit, RFU) obtainable with the purified enzyme system. An example of the analysis of purified enzyme activity and inhibitor treatment is given in Section 7. "Vehicle" refers to the solvent used to dissolve the inhibitor or treatment agent used in the study.

Notes:

1. Prepare the Apo-ONE® Caspase-3/7 Reagent as described in Section 3, and mix thoroughly prior to starting the assay.
2. Caspase-specific activities and unit definitions can vary widely depending on the manufacturer. Figure 6 shows a 160-fold difference in activity using enzymes from two different suppliers even though the specific activities of the enzymes are the same based on the units listed on the product labels. Assays using caspase-3 or -7 will need to be optimized depending on the unit definition.
3. Use identical enzyme concentrations for the assay and positive control reactions.
4. Do not mix Apo-ONE® Caspase-3/7 Reagent by manual pipetting upon addition to sample. Mixing in this manner is unnecessary and may create bubbles that interfere with fluorescence readings or cross-contaminate the samples. Gentle mixing may be done using a plate shaker.
5. Total incubation time for the assay will be dependent upon the amount of purified active caspase-3 or -7 present in the sample. Exceedingly low enzyme concentrations may require an extended incubation period.

5.B. Standard Assay (96-well, 200μl final reaction volume)

1. Add 100μl of Apo-ONE® Homogeneous Caspase-3/7 Reagent to each well of a white or black 96-well plate containing 100μl of blank, control, or assay treatment. If reusing tips, be careful not to touch pipette tips to the wells containing samples to avoid cross-contamination. Perform blank and positive controls in triplicate. If conducting a kinetic determination, immediately
proceed to Step 3. If not, shield the plate from ambient light. Cover the plate with a plate sealer if incubating for extended periods (>4 hours).

Note: To perform this assay in a 384-well plate, simply maintain the 1:1 volume ratio of Apo-ONE® Caspase-3/7 Reagent to sample. Adjust the total reaction volume such that the bottom of each well is covered but liquid does not splash from the wells during the assay.

2. Gently mix contents of wells using a plate shaker at 300–500rpm from 30 seconds up to read time. Incubate at room temperature for 30 minutes to 18 hours depending upon the level of the caspase-3 or -7 activity in the wells analyzed. The optimal incubation period should be determined empirically.

3. Measure the fluorescence of each well. The optimal excitation wavelength for detection is 499nm with emission maximum at a wavelength of 521nm (10). This protocol was developed using a spectrofluorometer configured to detect caspase-3/7 activity at an excitation wavelength range of 485 ± 20nm and an emission wavelength range of 530 ± 25nm. Kinetic readings will require several measurements/well and will be limited by spectrofluorometer instrumentation. Typically, total time frames for kinetic analysis range from 1 minute to 1 hour.

Figure 6. Comparison of caspase-3 enzymes from two different suppliers. The enzymes were compared based on the units listed on the labels. Both enzymes were serially diluted using phosphate-buffered saline containing 0.1% BSA in a single 96-well plate. Apo-ONE® Homogeneous Caspase-3/7 Reagent (100μl) was added to 100μl of diluted enzyme and incubated as described in Section 5.B for 10 minutes and the fluorescence was measured. The data were plotted using a log10 scale due to the broad range of units used.
6. Positive and Negative Cell Culture Controls

Apoptosis can be induced in experimental systems by a variety of methods that lead to caspase activation. These include:

- Treatment of FAS or TNF receptor-bearing cells by cross-linking with antagonistic antibodies (14,15).
- Treatment of cells with DNA topoisomerase inhibitors, e.g., etoposide (17), with the protein kinase inhibitor staurosporine (16), or with microtubule damaging agents such as paclitaxel (18).
- Exposure of cells to genotoxic damage induced by ionizing radiation (19,20).

Example: Analysis of Caspase Activity in Jurkat Cells Treated with Anti-Fas Antibody (Figure 7)

Materials to Be Supplied by the User

- anti-Fas receptor antibody
 (MBL International, Cat.# SY001)
- human Jurkat T-cells
- FBS
- RPMI 1640
- penicillin and streptomycin
- CO₂ incubator

1. Grow Jurkat cells to a density of 5 × 10⁵ cells/ml in RPMI 1640 medium containing 10% fetal bovine serum, 2mM glutamine and 1% penicillin-streptomycin in a humidified, 5% CO₂ incubator at 37°C.

2. Dilute cells in culture medium to the desired density. We recommend starting with 2 × 10⁵ cells/ml in a volume of 50μl. Dispense the cells into the wells of a 96-well plate. Leave at least 3 wells empty for blanks.

3. Add anti-Fas mAb diluted in 50μl of RPMI 1640 to assay wells. Make sure that the final concentration of the mAb in each well is 100ng/ml. For untreated samples (negative control), add 50μl of RPMI only.

4. Incubate for 5 hours at 37°C in a humidified, 5% CO₂ atmosphere.

5. Measure caspase-3/7 activity of anti-Fas antibody-treated (induced, positive control) and uninduced cells (negative control) as described in Section 4.B (standard assay).
Figure 7. Measurement of caspase-3/7 activity in anti-Fas antibody-treated human Jurkat T-cells. Twofold serial dilutions of Jurkat T-cells were treated with 100ng/ml of anti-Fas antibody in RPMI 1640 or RPMI 1640 only (control) for 5 hours at 37°C. Individual wells were assayed for caspase-3/7 activity according to the conditions described in Section 4. Measurements were taken using a Cytofluor® II. Typically background measurements (no cells) are approximately 400 RFU.

7. Purified Enzyme Analysis

Materials to Be Supplied by the User
- Caspase Inhibitor Ac-DEVD-CHO (Cat.# G5961)
- RPMI 1640
- recombinant, active caspase-3 (Upstate Biotechnology Cat.# 14-264)

Example: Determination of IC₅₀ for Caspase-3 with Ac-DEVD-CHO (Figure 8)

Serial dilutions of the Caspase Inhibitor Ac-DEVD-CHO are mixed with caspase-3, allowed to reach equilibrium, then assayed for remaining activity.

1. Serially dilute Ac-DEVD-CHO from 200nM to 0.194nM in PBS buffer (pH 7.5) with 0.1% BSA. Add 50μl per well to a black or white multiwell plate for each experimental well. Add PBS buffer (pH 7.5), 0.1% BSA without Ac-DEVD-CHO to a separate well for a maximal enzyme rate control.

2. Add 50μl active, recombinant human caspase-3 at 2.0u/ml in PBS buffer (pH 7.5), 0.1% BSA to each well.

3. Incubate the plate on a plate shaker for 1 hour with shaking (300–500rpm).

4. Add 100μl Apo-ONE® Caspase-3/7 Reagent to each well.

5. Measure remaining caspase activity rates at each dilution for kinetic measurements as described in Section 5.B, Step 3 (standard assay).
7. Purified Enzyme Analysis (continued)

Figure 8. IC₅₀ determination for Ac-DEVD-CHO. The experiment was performed as described in Section 7 except that RPMI was used in place of PBS buffer with 0.1% BSA. Serial dilutions of the Caspase Inhibitor Ac-DEVD-CHO were mixed with caspase-3 and allowed to reach equilibrium. Apo-ONE® Homogeneous Caspase-3/7 Reagent was added to the system, and activity rates were measured. To generate this plot, we performed nonlinear regression analysis on the data using GraphPad Prism® software.

8. Calculation of Caspase-3/7 Activity

Caspase-3/7 activity is indicated by net fluorescence:

\[
\text{assay RFU} - \text{blank RFU}
\]

or

\[
\text{assay RFU} - \text{negative control RFU}
\]

9. Apo-ONE® Assays Using the Beckman Coulter Biomek® 2000 and Biomek® FX Laboratory Automation Workstations

This system has been automated on the Beckman Coulter Biomek® 2000 and Biomek® FX Automation Workstations. For more information, please see the Automated Apo-ONE® Homogeneous Caspase 3/7 Assay Protocol #EP012 at:

www.promega.com/tbs/ and refer to the documentation provided with the BioWorks™ method. Information about obtaining these methods is available at:

www.promega.com/automethods/
10. References

11. Related Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caspase-Glo® 3/7 Assay*</td>
<td>10ml**</td>
<td>G8091</td>
</tr>
<tr>
<td>Caspase-Glo® 8 Assay*</td>
<td>10ml**</td>
<td>G8201</td>
</tr>
<tr>
<td>Caspase-Glo® 9 Assay*</td>
<td>10ml**</td>
<td>G8211</td>
</tr>
<tr>
<td>Caspase Inhibitor Ac-DEVD-CHO</td>
<td>100μl</td>
<td>G9691</td>
</tr>
<tr>
<td>Caspase Inhibitor Z-VAD-FMK</td>
<td>50μl**</td>
<td>G7231</td>
</tr>
<tr>
<td>Anti-PARP p85 Fragment pAb</td>
<td>50μl</td>
<td>G7341</td>
</tr>
<tr>
<td>Anti-ACTIVE® Caspase-3 pAb</td>
<td>50μl</td>
<td>G7481</td>
</tr>
<tr>
<td>CaspACE™ FITC-VAD-FMK In Situ Marker</td>
<td>50μl**</td>
<td>G7461</td>
</tr>
<tr>
<td>CaspACE™ Assay System, Colorimetric*</td>
<td>100 assays**</td>
<td>G7220</td>
</tr>
<tr>
<td>DeadEnd™ Colorimetric TUNEL System</td>
<td>40 reactions**</td>
<td>G7130</td>
</tr>
<tr>
<td>DeadEnd™ Fluorometric TUNEL System</td>
<td>60 reactions</td>
<td>G3250</td>
</tr>
<tr>
<td>rhTNF-α</td>
<td>10μg</td>
<td>G5241</td>
</tr>
<tr>
<td>Terminal Deoxynucleotidyl Transferase, Recombinant (TdT)*</td>
<td>300u</td>
<td>M1871</td>
</tr>
<tr>
<td>CellTiter-Glo® Luminescent Cell Viability Assay</td>
<td>10 × 10ml**</td>
<td>G7571</td>
</tr>
<tr>
<td>CellTiter-Blue® Cell Viability Assay</td>
<td>100ml**</td>
<td>G8081</td>
</tr>
<tr>
<td>CellTiter 96th AQ<sub>aqos</sub> One Solution</td>
<td>1,000 assays**</td>
<td>G3580</td>
</tr>
<tr>
<td>Cell Proliferation Assay*</td>
<td>1,000 assays**</td>
<td>G4521</td>
</tr>
<tr>
<td>CellTiter 96th AQ<sub>aqos</sub> Non-Radioactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Proliferation Assay*</td>
<td>1,000 assays**</td>
<td>G4000</td>
</tr>
<tr>
<td>CellTiter 96th Non-Radioactive Cell Proliferation Assay*</td>
<td>1,000 assays**</td>
<td>G4100</td>
</tr>
<tr>
<td>CytoTox-ONE™ Homogeneous Membrane Integrity Assay</td>
<td>1,000–4,000 assays**</td>
<td>G7891</td>
</tr>
<tr>
<td>CytoTox-ONE™ Homogeneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane Integrity Assay, HTP</td>
<td>1,000–4,000 assays</td>
<td>G7892</td>
</tr>
<tr>
<td>CytoTox 96th Non-Radioactive Cytotoxicity Assay*</td>
<td>1,000 assays</td>
<td>G1780</td>
</tr>
<tr>
<td>MultiTox-Fluor Multiplex Cytotoxicity Assay*</td>
<td>10ml**</td>
<td>G9200</td>
</tr>
<tr>
<td>CytoTox-Fluor™ Cytotoxicity Assay*</td>
<td>10ml**</td>
<td>G9260</td>
</tr>
</tbody>
</table>

*For Laboratory Use.

**Available in additional sizes.