We believe this site might serve you best:

United States

United States

Language: English

Promega's Cookie Policy

Our website uses functional cookies that do not collect any personal information or track your browsing activity. When you select your country, you agree that we can place these functional cookies on your device.

Our website does not fully support your browser.

We've detected that you are using an older version of Internet Explorer. Your commerce experience may be limited. Please update your browser to Internet Explorer 11 or above.

Studying Endogenous Protein Dynamics with CRISPR-Mediated Tagging: Understanding Your Options

Dr. Christopher Eggers received his Ph.D. in biochemistry and molecular biology from the University of California at San Francisco and then completed a postdoctoral fellowship at the Howard Hughes Medical Institute at UC San Diego. Since 2011, Dr. Eggers has been a Senior Research Scientist at Promega, where he has focused principally on the development of the NanoLuc® and NanoBiT® technologies to create new bioluminescent assays that simplify the measurement of protein dynamics.
  • Christopher Eggers, PhD

  • Sr Research Scientist
    Promega Corporation

Tuesday, June 4, 2019

An exciting application of CRISPR/Cas9-mediated gene editing is the ability to tag and measure endogenously expressed proteins while maintaining native expression levels and regulation. In this webinar, we will discuss available options for simple and efficient knock-in of a bioluminescent peptide tag to enable sensitive, homogeneous assays for measuring protein dynamics.

Additional Webinar Information:

CRISPR/Cas9 technology has revolutionized genome editing by offering a simple method to tag proteins at endogenous loci, facilitating the study of protein biology while maintaining proper transcriptional regulation, expression levels and stoichiometry with binding partners.  By contrast, ectopic expression of tagged proteins can lead to a variety of overexpression artifacts, like mislocalization, aggregation or dysregulation of degradation.  HiBiT, an 11-amino-acid bioluminescent peptide, represents an ideal tag for endogenous labeling due to its small size and large, linear dynamic range.  In this webinar, we will highlight an efficient, cloning-free method for knock-in of HiBiT, as well as other protein tags, and we will discuss how these endogenously modified cells can be used in a variety of assay formats to study protein abundance, localization, modification and interactions.  Additionally, we will discuss do-it-yourself approaches, the availability of pools and stable clones, and support for assay development.