We believe this site might serve you best:

United States

United States

Choose language: English

Promega's Cookie Policy

Our website uses functional cookies that do not collect any personal information or track your browsing activity. When you select your country, you agree that we can place these functional cookies on your device.

Improved Chemistry for NGS Library Cleanup and Size Selection

Charles Cowles, PhD, leads research projects in the Nucleic Acid Purification Research Group at Promega. Prior to joining Promega, Dr. Cowles was a postdoctoral research fellow at Princeton University in the Department of Molecular Biology. He received his PhD from the Microbiology Doctoral Training Program at the University of Wisconsin-Madison. During his tenture at Promega, Dr. Cowles has developed several DNA and RNA purification systems for automated and manual usage in the clinical and research fields.
  • Charles Cowles, PhD

  • Sr Research Scientist
    Promega Corporation

Tuesday, October 10, 2017

Current size-selective DNA purification methods need improvement with respect to sample loss, poor reproducibility, high viscosity and recovery of undesired high MW fragments. With new size selection chemistry, you can improve yield, selectivity, usability, and functionality in NGS library cleanup and size selection, as well as PCR cleanup and other applications.

Additional Webinar Information:

Next Generation Sequencing (NGS) libraries require high quality nucleic acid inputs of varying quantities, concentration, and size depending on the library preparation methods and sequencing platforms used. Regardless of these variations, in most instances a magnetic bead-based chemistry is utilized as a portion of the overall protocol. These steps using magnetic bead chemistries fall into two basic categories of function:

  1. Sample Cleanup: Removes sequencing adapters or PCR primers, dNTP's, enzymes or unwanted buffer formulations.
  2. Size Selection: Removes unwanted nucleic acid fragment or library molecules that are above or below a specific size range optimal for the downstream sequencing platform.

By varying the ratio of bead chemistry added to the original volume of DNA in solution, the user can alter the size of DNA captured by the beads or left behind in solution. Traditionally, both functions described above involve the use of a magnetic bead with a carboxylated polymer-coated surface combined with a buffer containing a crowding agent (PEG) and salt. While commercially available products and homebrew methods are used extensively in NGS library prep methods, there are several areas for improvement in the overall performance with these protocols. These include:

  • Significant loss of up to 50% of DNA with each wash or size selection step
  • Poor reproducibility between samples for both recovery % and size selection
  • High viscosity of the chemistry, leading to difficulty in accurate pipetting and automation
  • Retention of high molecular weight above the desired size range of the user

In order to improve overall performance in NGS library preparation, we set the following goals for a new chemistry solution:

  • Increased DNA recovery, with an average of >80%+ DNA target cutoff size retained after each wash or size selection step
  • Reduced viscosity of the chemistry, providing more accurate pipetting and better reproducibility
  • More accurate size cutoffs, with less high molecular weight DNA retained outside of desired range

In this webinar, we will discuss various improvements in yield, selectivity, usability, and functionality for a new size selection chemistry, including PCR purification, enhanced circulating cell-free DNA purification, NGS library size selection, and sequencing results.

Share With a Friend

We will NOT sell your personal information, such as your name or email address, to third parties or use your email address to send you marketing materials. The email and names entered will only be used to identify the sender and recipient of the email.

Send Cancel

Time Zone Converter



Convert To

Converted Time

Choose your country


United States

Pacific Asia

Korea, Republic of


United Kingdom