PowerQuant® System Setup Method for the Maxprep™ Liquid Handler

Instructions for Use of Products AS9100, AS9101, AS9200 and AS9201

PowerQuant® System Setup Method for the Maxprep™ Liquid Handler

1. Description

The PowerQuant® System Setup Method for the Maxprep™ Liquid Handler is designed to automate preparation of the PowerQuant® System quantitative PCR amplifications of forensic samples. PowerQuant® System Setup Method includes master mix preparation, serial dilution of standard curves, sample transfer and control placement. Administrators can create variant methods in the Maxprep™ software that specify reaction setup options to meet the needs of the laboratory.

2. Materials to Be Supplied By the User

- amplification plate(s), user-specified
- 1.5ml tube(s) (e.g., ClickFit Microtube, 1.5ml, Cat.# V4741)
- Maxprep™ 3-Position Reagent Tube Holders (up to 6 needed; Cat.# AS9409)
- Maxprep™ 50µl Conductive Disposable Tips, Filtered (Cat.# AS9301)
- Maxprep™ 300µl Conductive Disposable Tips, Filtered (Cat.# AS9302)
- strip tubes, user-specified
- amplification plate base (e.g., Thermo Fisher Scientific MicroAmp® 96-well base, Cat.# N8010531)
3. **Run-Specific Information**

The default administrator settings require, upon initiation of the method, that a PowerQuant® System kit bar code be scanned or manually entered. The first screen of the method requests information regarding general method run parameters such as input labware and destination labware prior to amplification setup.

1. Use the drop-down menus to specify the Input Labware and Destination Labware; samples are placed on the system in the Input Labware, and the amplification reaction is prepared in the Destination Labware. Maxwell® deck trays, plates and tubes can all be used as input labware options for amplification setup.

2. The top right corner of the screen shows the Maximum Number of Samples allowed within this amplification setup run. The number displayed is based on:
 - The number of sample positions in the input labware
 - The number of control wells specified
 - The number of standards specified
 - The number of standard curve and sample replicates
 - The available space in the destination labware

3. To view the administrator-defined settings for this method, press the **Variant Information** button.

4. **Instrument Setup Instructions**

Below is an image and table indicating the general layout of the Maxprep™ Liquid Handler and the positions of all required and optional labware for this method.
<table>
<thead>
<tr>
<th>Position</th>
<th>Reagent/Labware</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A¹</td>
<td>Amplification Plate</td>
<td>User-specified amplification plate</td>
</tr>
<tr>
<td>B</td>
<td>Input Sample Positions</td>
<td>Samples in Maxwell® deck trays, samples in plates, or samples in tubes.</td>
</tr>
<tr>
<td>C</td>
<td>Reaction Mix Preparation; one (1) empty 1.5ml tube as prompted</td>
<td>Maxprep™ 3-Position Reagent Tube Holder</td>
</tr>
<tr>
<td>D¹</td>
<td>Amplification Controls; up to three (3) individual 1.5ml tubes</td>
<td>Maxprep™ 3-Position Reagent Tube Holder</td>
</tr>
<tr>
<td>E¹,³</td>
<td>PowerQuant® Male gDNA Standard (Position 1) and PowerQuant® Dilution Buffer (Position 2)</td>
<td>Maxprep™ 3-Position Reagent Tube Holder.</td>
</tr>
<tr>
<td>F</td>
<td>Up to 3 tubes of PowerQuant® 2X Master Mix</td>
<td>Maxprep™ 3-Position Reagent Tube Holder</td>
</tr>
<tr>
<td>G</td>
<td>Up to 3 tubes of PowerQuant® 20X Primer/Probe/IPC Mix</td>
<td>Maxprep™ 3-Position Reagent Tube Holder</td>
</tr>
<tr>
<td>H</td>
<td>Up to 3 tubes of Water, Amplification Grade</td>
<td>Maxprep™ 3-Position Reagent Tube Holder</td>
</tr>
<tr>
<td>I²</td>
<td>Labware for Standard Curve and Water Transfer</td>
<td>Amplification plate base with strip tubes in columns 1 and 12.</td>
</tr>
<tr>
<td>J</td>
<td>300µl Conductive Disposable Tips, Filtered</td>
<td>Partial or full rack</td>
</tr>
<tr>
<td>K</td>
<td>50µl Conductive Disposable Tips, Filtered</td>
<td>Partial or full rack</td>
</tr>
<tr>
<td>L</td>
<td>50µl Conductive Disposable Tips, Filtered</td>
<td>Full rack</td>
</tr>
</tbody>
</table>

¹Optional labware positions based on variant settings.
²The standard curve labware is used to hold Water, Amplification Grade, and prepare standard curve serial dilutions.
³Position 1 is the rear position and Position 2 is the middle position in the Maxprep™ 3-Position Reagent Tube Holder.
5. **PowerQuant® System Setup Protocol**

The Maxprep™ Liquid Handler will prepare PowerQuant® System quantitative PCR amplifications as indicated by the variant selected. The actual steps performed by the method will depend on the settings made in the variant method. Below are all of the steps that can be performed by the Maxprep™ Liquid Handler, depending on variant settings:

1. Prepare amplification reaction mix in one 1.5ml tube for all samples, controls and standards.
2. **Optional:** Transfer PowerQuant® Dilution Buffer to column 1 of the standard curve labware.
3. **Optional:** Serial dilution of standards in column 1 of the standard curve labware.
4. Transfer water to column 12 of the standard curve labware.
5. Transfer reaction mix to the amplification plate.
6. Transfer water, samples and standards to the amplification plate.
7. Method is complete. Open the instrument door, remove the amplification plate and centrifuge at $500 \times g$ for 30 seconds to remove any bubbles. Prepare the plate per your amplification protocol. Remove primary samples from the system and store them. Discard used labware as hazardous waste following your institution’s recommended guidelines. Either discard or tightly cap and store remaining reagents.

Consumables for Maxprep™ methods are designed to be used with potentially infectious substances. Use appropriate protective equipment (e.g., gloves and safety glasses) when handling infectious substances. Adhere to your institutional guidelines for the handling and disposal of all infectious substances when used with this system.

6. **Variant Method Variables**

Administrators should create laboratory-specific variants of the PowerQuant® System Setup Method for each unique amplification plate setup they wish to create. The following sections describe the variables that can be adjusted by administrators. For all variables listed, the administrator should define the default value for the variable within the displayed minimum and maximum allowable values.

Controls

These variables define the layout of controls on the amplification plate. Up to three different control types can be used within a run, and multiple well locations can be defined for each control type. Options within the table below are available for each of three control types. Within the table, X indicates the value 1, 2 or 3.

Note: Placement of controls on the plate occurs sequentially. If the same well location is specified for controls 1, 2 and 3, only control 3 will be placed at that location. If the control is placed at a well location specified for the standard curve, only the standard curve will be placed at that location.
Setting Details

<table>
<thead>
<tr>
<th>Setting</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control #X Name</td>
<td>Name of the control; identifies the control during instrument setup.</td>
</tr>
<tr>
<td>Control #X Concentration</td>
<td>Concentration value of the control; used for reporting purposes.</td>
</tr>
<tr>
<td>Control #X Well Numbers¹</td>
<td>Well locations where the control should be placed. For multiple control wells, specify the well locations as a comma-delimited list (e.g., 1, 17).</td>
</tr>
</tbody>
</table>

¹Well numbering proceeds down columns and across the plate. For example, A1 = 1, B1 = 2, A2 = 9, etc. A well numbering diagram is displayed in the Amplification Setup Methods for the Maxprep™ Liquid Handler Technical Manual #TM526.

Reagents

The following variables define whether kit lot information must be provided and whether an expired kit can be used.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is kit lot information required?</td>
<td>Check this box if a kit bar code must be scanned or manually entered to run.</td>
</tr>
<tr>
<td>Must kit lot be within expiration?</td>
<td>Check this box to disallow the usage of an expired kit.</td>
</tr>
</tbody>
</table>

Samples

This variable defines the number of replicate reactions prepared for each sample.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Replicate Number</td>
<td>Specify the number of replicates that should be prepared for each sample. The entire set of samples is placed on the amplification plate as a group, and then the entire group is replicated.</td>
</tr>
</tbody>
</table>

Standards

The standards variables define the concentration of the standard stock, the concentration of each standard, the number of standard curve points and the number of standard curve replicates to use for the amplification setup. A standard curve does not need to be prepared during reaction setup.

Note: To perform a PowerQuant® amplification without a standard curve, leave the 'Prepare Standard Curve' box unchecked.

Prepare Standard Curve

This checkbox determines whether a standard curve will be prepared for an amplification setup. Check the box to create a standard curve as defined by the Standards variables. Leave the box unchecked to prepare amplification reactions without any standard curve, and all other variant options in Standards will be ignored.
6. Variant Method Variables (continued)

Standard Concentration

Concentrations for up to eight standards can be specified to define the standard curve for the amplification plate. Concentration units are not provided for the standards to allow each laboratory to define the units (e.g., ng/µl, pg/µl, copies/µl, etc.). However, all standard concentrations must be specified in the same unit. The first standard must have the highest concentration with each subsequent standard decreasing in concentration. The final standard to be used in the standard curve should be a No-Template Control (NTC) with a concentration of 0. Any standard positions that are not to be used should be assigned a concentration of –1. Standard curves will be prepared on the right side of the amplification plate with the final NTC curve point in well H12 of a 96-well plate, and the other curve points arrayed sequentially above.

Note: The dilution between standard curve points must be between two- and twenty-five-fold.

Stock Concentration for Standards

The concentration of the standard stock should be entered in the same unit defined for the standard curve points. The standard stock must have a concentration equal to or higher than the concentration of the first standard in the standard curve. The stock concentration must be no more than 25X the highest concentration of the standard curve.

Standard Curve Replicates

This variable specifies the number of standard curve replicates that should be prepared on the amplification plate. Standard curves are placed on the lower right side of the amplification plate with each successive standard curve replicate shifted one column to the left. As the number of standard curve replicates increases, the total number of samples that can be processed on a given amplification plate decreases.