IL-23 Bioassay
Instructions for use of Products
JA2511 and JA2515
IL-23 Bioassay

All technical literature is available at: www.promega.com/protocols/
Visit the web site to verify that you are using the most current version of this Technical Manual.
E-mail Promega Technical Services if you have questions on use of this system: techserv@promega.com

1. Description ... 2
2. Product Components and Storage Conditions .. 9
3. Before You Begin ... 10
4. Stimulation Protocol ... 12
 4.A. Plate Layout Design .. 13
 4.B. Preparing Reagents for the Assay .. 14
 4.C. Plating IL-23 Bioassay Cells ... 14
 4.D. Preparing Serial Dilutions .. 16
 4.E. IL-23 Stimulation Assay ... 16
 4.F. Adding Bio-Glo™ Reagent .. 17
 4.G. Data Analysis .. 17
5. Inhibition Protocol .. 18
 5.A. Preparing Antibody Dilutions ... 19
 5.B. Plating IL-23 Bioassay Cells ... 20
 5.C. IL-23 Inhibition Assay ... 20
 5.D. Adding Bio-Glo™ Reagent .. 21
 5.E. Data Analysis .. 21
6. Troubleshooting .. 22
7. References .. 23
8. Related Products .. 24
9. Summary of Changes .. 26
1. Description

Interleukin-23 (IL-23) was first described in 2000 when a computational screen identified a novel sequence (p19) that combined with the p40 subunit of IL-12 to create an active and composite cytokine. It is secreted by activated dendritic cells and possesses biological properties both distinct from and in common with IL-12 (1).

IL-23 is a member of the larger IL-12 cytokine family, which consists of IL-12, IL-23, IL-27, IL-35 and IL-39. This unique group of heterodimeric cytokines consists of an alpha chain subunit (p19, p28 or p35) and a beta chain subunit (p40 or Epstein-Barr virus induced gene 3), and signals through JAK/STAT pathways.

IL-23 binds and signals through a heterodimeric receptor complex. The p19 subunit binds to IL-23R and p40 subunit to IL-12Rβ1. Similarly, the p35 and p40 subunits of IL-12 bind to IL-12Rβ2 and IL-12β1, respectively.

The IL-23 receptor is found on natural killer cells, macrophages, memory T cells (Th17) and keratinocytes. In response to microbial pathogens and wound healing signals, IL-23 is secreted by activated dendritic cells and macrophages with subsequent neutrophil recruitment.

Upon IL-23 binding to Th17 cells, signaling begins with tyrosine kinase 2 (TYK2) recruitment to IL-12Rβ1 and Janus kinase 2 (JAK2) recruitment to IL-23R. These kinases phosphorylate and activate signal transducer and activator of transcription 3 (STAT3), and to a lesser extent STAT4, STAT1 and STAT5 (2). Phosphorylated STAT3 complexes translocate to the nucleus, inducing expression of IL-17A, IL-23R and the transcription factor retinoid-related orphan receptor-γt, thus stabilizing the Th17 phenotype (3).

Both IL-23 and IL-12 cytokines are involved in human T helper cell differentiation and survival. IL-12 binds and directly promotes the differentiation of naïve CD4+ T cells into T helper 1 cells. It is believed that IL-6, IL-1β and TGFβ are involved in the differentiation of human T helper 17 cells (Th17), while IL-23 is critical for their maturation, maintenance and pathogenicity (4–6).

Ustekinumab is a humanized antibody that targets the p40 cytokine subunit and prevents IL-12 and IL-23 binding to IL-12Rβ1. It was FDA approved for the treatment of psoriasis in 2009, psoriatic arthritis in 2013 and most recently Crohn’s disease in 2016 (7).

Recent research has indicated that IL-23 and the Th17 secretion of the pro-inflammatory cytokines IL-17, IL-22 and IL-21 are prominent contributors to the formation of psoriatic inflammation and plaques (8–10). By selectively targeting the IL-23p19 subunit, key therapeutic advantages may be achieved including preserving IL-12 Th1 pathogenic responses. Recently, several biologics targeting IL-23p19 have been approved for moderate-to-severe plaque psoriasis, including guselkumab, tildrakizumab and risankizumab.

The IL-23 Bioassay[a–e] (Cat. # JA2511, JA2515) is a bioluminescent cell-based assay designed to measure IL-23 stimulation or inhibition. The IL-23 Bioassay Cells are provided in a thaw-and-use format as cryopreserved cells that can be thawed, plated and used in an assay without the need for cell propagation. IL-23 Bioassay Cells are also available in a Cell Propagation Model (CPM) format, as cryopreserved cells that can be thawed, propagated and banked for long-term use (IL-23 Bioassay, Propagation Model, Cat.# J3002).
The IL-23 Bioassay consists of human cells engineered to express the IL-23 receptor and a luciferase reporter driven by a response element (RE; Figure 1). When IL-23 binds to IL-23R, intracellular signals are transduced, resulting in luminescence. The bioluminescent signal is detected and quantified using Bio-Glo™ Luciferase Assay System(e) (Cat.# G7940, G7941) and a standard luminometer, such as the GloMax® Discover System (see Related Products, Section 8).

Figure 1. Representation of the IL-23 Bioassay. The IL-23 Bioassay consists of a genetically engineered cell line, IL-23 Bioassay Cells. When IL-23 binds to the IL-23 receptor (IL-23R), receptor-mediated pathway signaling induces luminescence that can be detected upon addition of Bio-Glo™ Reagent and quantified with a luminometer. Inhibition of IL-23 binding by anti-IL-23 or anti-IL-23R antibody results in a decrease in luminescence.
1. Description (continued)

Figure 2. The IL-23 Bioassay responds to recombinant IL-23. IL-23 Bioassay Cells were prepared as described in this protocol and incubated with serial dilutions of recombinant IL-23. After a 4-, 5-, 6- or 24-hour incubation, Bio-Glo™ Reagent was added, and luminescence was quantified using the GloMax® Discover System. Data were fitted to a 4PL curve using GraphPad Prism® software. Panel A shows raw luminescence measurements. Panel B displays the calculated fold induction. Data were generated using thaw-and-use cells.
Table 1. The IL-23 Bioassay Shows Precision, Accuracy and Linearity.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Expected Relative Potency</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>97.5</td>
</tr>
<tr>
<td>70</td>
<td>102.5</td>
</tr>
<tr>
<td>140</td>
<td>95</td>
</tr>
<tr>
<td>200</td>
<td>91.9</td>
</tr>
<tr>
<td>Repeatability (% CV)</td>
<td>100% (Reference)</td>
</tr>
<tr>
<td>Intermediate Precision (% CV)</td>
<td></td>
</tr>
<tr>
<td>Linearity (r²)</td>
<td>0.998</td>
</tr>
<tr>
<td>Linearity (y = mx + b)</td>
<td>y = 0.89x – 6.97</td>
</tr>
</tbody>
</table>

A 50–200% theoretical potency series of ustekinumab (anti-IL-23) was analyzed in triplicate in three independent experiments performed on three days by two analysts (for a total of six independent experiments). Bio-Glo™ Reagent was added and luminescence quantified using the GloMax® Discover System. Data were analyzed and relative potencies calculated after parallelism determination using JMP® software. Data were generated using thaw-and-use cells.

Figure 3. The IL-23 Bioassay shows precision, accuracy and linearity. A 50–200% theoretical potency series of ustekinumab was analyzed in triplicate in three independent experiments performed on three days by two analysts using the IL-23 Bioassay (for a total of six independent experiments). Bio-Glo™ Reagent was added and luminescence quantified using the GloMax® Discover System. Linearity and r² values were determined using GraphPad Prism® software. Data were generated using thaw-and-use cells.
Figure 4. The IL-23 Bioassay demonstrates repeatability. Four separate dilution series of ustekinumab were analyzed on four individual assay plates using the IL-23 Bioassay. Bio-Glo™ Reagent was added, and luminescence was quantified using the GloMax® Discover System. Data were fitted to a 4PL curve using GraphPad Prism® software. Data were generated using thaw-and-use cells.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC_{50}</td>
<td>0.2300</td>
<td>0.2202</td>
<td>0.1991</td>
</tr>
</tbody>
</table>

Figure 5. The IL-23 Bioassay indicates stability. Ustekinumab was heat treated at 65°C for 0–6 hours prior to use in the IL-23 Bioassay. Bio-Glo™ Reagent was added, and luminescence was quantified using the GloMax® Discover System. Data were fitted to a 4PL curve using GraphPad Prism® software. Data were generated using thaw-and-use cells.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>2 hours</th>
<th>4 hours</th>
<th>6 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC_{50}</td>
<td>10.06</td>
<td>29.87</td>
<td>100.0</td>
<td>269.8</td>
</tr>
</tbody>
</table>
Figure 6. The IL-23 Bioassay is amenable to 384-well plate format. The IL-23 Bioassay was tested in 96- and 384-well formats. IL-23 Bioassay Cells were prepared and dispensed in 50µl (96-well) or 12.5µl (384-well) volumes. Serial threefold dilutions of recombinant human IL-23 were prepared and added to cells (25µl/well for 96-well format; 6.2µl/well for 384-well format). After 6 hours of stimulation, Bio-Glo™ Reagent was added (75µl/well for 96-well; 18.7µl/well for 384-well), and luminescence was quantified using the GloMax® Discover System. Data were fitted to a 4PL curve using GraphPad Prism® software. Data were generated using thaw-and-use cells. (Costar® Cat.# 3570 384-well plates were used.)

Figure 7. The IL-23 Bioassay tolerates up to 10% human serum. IL-23 Bioassay Cells were tested with a dose-response of recombinant IL-23 in the absence or presence of increasing concentrations of pooled normal human serum, resulting in final assay concentrations of 0–10% human serum. Bio-Glo™ Reagent was added, and luminescence was quantified using the GloMax® Discover System. Data were fitted to a 4PL curve using GraphPad Prism® software. Data were generated using thaw-and-use cells.
Figure 8. IL-23 Bioassay was tested for cytokine cross reactivity. Panel A. IL-23 Bioassay Cells were tested using a panel of IL-6 family cytokines (IL-6, IL-11, IL-23, LIF, Oncostatin M, CNTF and CT-1). Following a 6-hour treatment, Bio-Glo™ Reagent was added, and luminescence was quantified using the GloMax® Discover System. Data were fitted to a 4PL curve using GraphPad Prism® software. Data were generated using thaw-and-use cells. Panel B shows a lack of IL-23 Bioassay response to the structurally related cytokine IL-12.
2. Product Components and Storage Conditions

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>SIZE</th>
<th>CAT.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-23 Bioassay</td>
<td>1 each</td>
<td>JA2511</td>
</tr>
</tbody>
</table>

Not for Medical Diagnostic Use. Each kit contains sufficient reagents for 120 assays using the inner 60 wells of two 96-well plates. Includes:

- 1 vial IL-23 Bioassay Cells (1.2 × 10^7 cells/ml; 0.65ml per vial)
- 36ml RPMI 1640 Medium
- 4ml Fetal Bovine Serum
- 1 vial Bio-Glo™ Luciferase Assay Substrate (lyophilized)
- 10ml Bio-Glo™ Luciferase Assay Buffer

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>SIZE</th>
<th>CAT.#</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-23 Bioassay SX</td>
<td>1 each</td>
<td>JA2515</td>
</tr>
</tbody>
</table>

Not for Medical Diagnostic Use. Each kit contains sufficient reagents for 120 assays using the inner 60 wells of two 96-well plates. Includes:

- 5 vials IL-23 Bioassay Cells (1.2 × 10^7 cells/ml; 0.65ml per vial)
- 5 × 36ml RPMI 1640 Medium
- 5 × 4ml Fetal Bovine Serum
- 5 vials Bio-Glo™ Luciferase Assay Substrate (lyophilized)
- 5 × 10ml Bio-Glo™ Luciferase Assay Buffer

Note: IL-23 Bioassay components are shipped separately because of differing temperature requirements. The IL-23 Bioassay Cells are shipped on dry ice. The Bio-Glo™ Luciferase Assay System and Fetal Bovine Serum are shipped on dry ice separately from the cells. The RPMI 1640 Medium is shipped at ambient temperature.

Storage Conditions:

- Upon arrival, immediately transfer the cell vials to below −140°C (freezer or liquid nitrogen vapor phase) for long-term storage. Do not store cell vials submerged in liquid nitrogen. Do not store cell vials at −80°C because this will decrease cell viability and cell performance.
- Store Bio-Glo™ Luciferase Assay Substrate, Bio-Glo™ Luciferase Assay Buffer and Fetal Bovine Serum at −20°C. Avoid multiple freeze-thaw cycles of the serum.
- For optimal performance, use reconstituted Bio-Glo™ Reagent on the day of preparation. However, once reconstituted, Bio-Glo™ Reagent can be stored at −20°C for up to 6 weeks.
- Store RPMI 1640 Medium at 4°C protected from light.
3. Before You Begin

Please read through the entire protocol to become familiar with the components and the assay procedure before beginning.

Remove the product label from the box containing vials with cells or note the catalog number and lot number from the label. This information can be used to download documents for the specified product from the website, such as the Certificate of Analysis.

The IL-23 Bioassay is intended to be used with user-provided biologics designed to activate or inhibit the IL-23 signaling pathway. The recommended cell plating density, induction time and assay buffer components described in Section 4 were established using research-grade recombinant human IL-23. You may need to adjust the parameters provided here and optimize assay conditions for other biologic samples. Data generated using these reagents are shown in Figure 2.

The IL-23 Bioassay produces a bioluminescent signal and requires a sensitive luminometer or luminescence plate reader for the detection of luminescence. Bioassay development and performance data included in this Technical Manual were generated using the GloMax® Discover System luminometer. An integration time of 0.5 seconds/well was used for all readings. The bioassay is compatible with most other plate-reading luminometers; however, relative luminescence unit readings may vary due to the sensitivity and settings of each instrument. The use of different instruments should not affect the measured relative potency of test samples.

Materials to Be Supplied by the User

Reagents
- user-defined biologics samples
- optional: recombinant human IL-23 (e.g., PeproTech Cat. # 200-23)

Supplies and Equipment
- white, flat-bottom 96-well assay plates (e.g., Corning® Cat.# 3917)
- sterile clear 96-well plate with lid (e.g., Corning® Cat.# 3896 or Falcon Cat.# 353077) for preparing sample dilutions
- pipettes (single-channel and 12-channel)
- sterile 15ml and 50ml conical tubes
- sterile reagent reservoirs (e.g., Corning® Cat.# 4870)
- humidified 37°C, 5% CO₂ incubator
- 37°C water bath
- plate reader that measures glow luminescence or luminometer (e.g., GloMax® Discover System)
Figure 9. IL-23 Bioassay schematic protocol.
4. Stimulation Protocol

The IL-23 Bioassay can be used to test IL-23 cytokine and IL-23/IL-23R blocking antibodies. This stimulation protocol illustrates the use of the IL-23 Bioassay to examine two test samples against a reference sample in a single assay run. Each test and reference sample is run in triplicate in a 10-point dilution series, in a single 96-well assay plate using the inner 60 wells (Figure 10). Other experimental and plate layouts are possible but may require further optimization. The inhibition protocol (Section 5) illustrates the use of the bioassay to examine blockade of IL-23 activity.

Notes:

1. When preparing test and reference samples, choose an appropriate starting concentration and dilution scheme to achieve a full dose-response curve with proper upper and lower asymptotes and sufficient points on the slope. For reference, we use 0–500ng/ml of recombinant human IL-23 (PeproTech Cat.# 200-23) as a sample range, with serial threefold dilutions to achieve full dose curves as 10-point series. Concentration ranges and dilution schemes may need to be optimized for your samples.

2. When diluted as directed, each kit containing medium, serum and 1 vial of IL-23 Bioassay Cells, is sufficient for 120 wells (two 96-well plates using inner 60 well format). These thaw-and-use cells are for single use only and cannot be cultured or refrozen for second use. Please plan your experiments accordingly to optimize the use of the thaw-and-use cells.
4.A. Plate Layout Design

For the protocol described here, use the plate layout illustrated in Figure 10 as a guide. The protocol describes serial replicate dilutions (n = 3) of test and reference samples to generate two 10-point dose-response curves for each plate.

<table>
<thead>
<tr>
<th></th>
<th>Assay Buffer (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>B</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>B</td>
</tr>
<tr>
<td>F</td>
<td>B</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>B</td>
</tr>
<tr>
<td>G</td>
<td>B</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>B</td>
</tr>
<tr>
<td>H</td>
<td>B</td>
</tr>
</tbody>
</table>

Figure 10. Example plate layout. This suggested layout shows nonclustered locations for three replicates of each test and reference sample dilution series (dilu1–dilu9) and wells containing assay buffer alone (denoted by “B”).
4.B. Preparing Reagents for the Assay

1. **Bio-Glo™ Reagent:** For reference, 10ml of Bio-Glo™ Reagent is sufficient to assay 120 wells in a 96-well assay format. Thaw the Bio-Glo™ Luciferase Assay Buffer in a refrigerator overnight or in a room-temperature water bath on the day of assay. Equilibrate the Bio-Glo™ Luciferase Assay Buffer to ambient temperature, protected from light. Transfer all of the Bio-Glo™ Luciferase Assay Buffer into the amber bottle containing the Bio-Glo™ Luciferase Assay Substrate and mix by inversion until the Substrate is thoroughly dissolved. Equilibrate and store the reconstituted Bio-Glo™ Reagent at ambient temperature (22–25°C) protected from light before adding to assay plates.

 After reconstitution, the Bio-Glo™ Reagent can be stored at room temperature with ~18% loss in luminescence after 24 hours or at 4°C with ~12% loss of luminescence after 5 days.

2. **Assay Buffer:** Ensure that an appropriate amount of assay buffer is prepared for the assay. Thaw the fetal bovine serum (FBS) overnight at 4°C or in a 37°C water bath, taking care not to overheat it. To make 40ml of assay buffer, add 4ml of FBS to 36ml of RPMI 1640 medium to yield 90% RPMI 1640 medium/10% FBS. Mix well and warm to 37°C prior to use. For reference, 40ml of assay buffer is typically sufficient for 120 wells in a 96-well assay format using the inner 60 plate wells.

4.C. Plating IL-23 Bioassay Cells

The thaw-and-use IL-23 Bioassay Cells included in this kit are sensitive; carefully follow the cell thawing and plating procedures exactly as described. Do not overmix or overwarm the cell reagents. No additional cell culture or manipulation is required. We recommend that you thaw and dilute a maximum of two vials of thaw-and-use cells at a time.

Follow institutional guidelines for handling, including use of personal protective equipment (PPE) and waste disposal for biohazardous material.

1. Remove one vial of IL-23 Bioassay Cells from storage at –140°C and transfer to the bench on dry ice.
2. Add 10.4ml of prewarmed (37°C) assay buffer to a 15ml conical tube.
3. Warm the cells in a 37°C water bath until just thawed (about 2 minutes). While thawing, gently agitate and visually inspect. Try not to submerge the vial completely. Do not invert the vial.
4. Gently mix the cell suspension by pipeting, then transfer 0.65ml of the cells to the 15ml conical tube containing 10.4ml of assay buffer. Mix well by gently pipeting or inverting 5 times.
5. Transfer the cell suspension to a sterile reagent reservoir.
6. Using a multichannel pipette, immediately dispense 50µl of the cell suspension to each of the inner 60 wells of two 96-well assay plates. Optimal results depend on gently keeping the cells evenly resuspended during the plating process.
7. Add 75µl/well of warm assay buffer to the outer 36 wells of each plate.
8. Cover each assay plate with a lid and incubate at 37°C in a 5% CO₂ incubator while preparing samples and dilutions.
Recommended Plate Layout for Sample Dilutions Prepared from a Single Sample Stock

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>Reference Sample</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>Reference Sample</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>Test Sample 1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>no drug</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>Test Sample 2</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11. Example plate layout showing reference and test sample serial dilutions. Wells A2, B2, C2 and D2 contain 120µl of assay buffer without sample as a negative control.
4.D. Preparing Serial Dilutions

The instructions described here are for preparation of a single stock of threefold serial dilutions of a single sample for analysis in triplicate (120µl of each dilution provides a sufficient volume for analysis in triplicate). Alternatively, you can prepare three independent stocks of serial dilutions to generate triplicate samples. To prepare threefold serial dilutions, you will need a minimum of 360µl of a reference sample at 3X the highest concentration in your dose-response curve. You will need a minimum of 180µl of each test sample at 3X the highest concentration in each of the test sample dose-response curves. For other dilution schemes, adjust the volumes accordingly.

Serial dilutions should be prepared on the day of the assay, after plating the IL-23 Bioassay Cells.

Recommended starting concentration of reference samples

For IL-23 stimulation using recombinant human IL-23 as your reference sample (PeproTech IL-23 Cat.# 200-23), we recommend starting with a 3X concentration of 1,500ng/ml and performing serial threefold dilutions. When using other reference sources of IL-23, the starting concentration may need to be adjusted.

1. To a sterile clear 96-well plate, add 180µl of reference sample starting dilution (dilu1, 3X final concentration) to wells A11 and B11 (see Figure 11).
2. Add 180µl of test samples 1 and 2 starting dilution (dilu1, 3X final concentration) to wells C11 and D11.
3. Add 120µl of assay buffer to the other wells in rows A, B, C and D, from column 10 to column 2.
4. Transfer 60µl of the sample starting dilutions from column 11 to column 10. Mix well by pipetting. Avoid creating bubbles.
5. Repeat equivalent threefold serial dilutions across the columns from right to left until you reach column 3. Remove 60µl from column 3 so that all wells have a volume of 120µl. Do not dilute into column 2.
6. Cover the plate with a lid and proceed to Section 4.E.

4.E. IL-23 Stimulation Assay

1. Using a multichannel pipette, dispense 25µl of each sample to the 50µl of preplated cells according to the plate layout in Figure 10.
2. Cover each assay plate with a lid and incubate in a humidified 37°C, 5% CO₂ incubator for 6 hours.

 Note: Other induction times can be used; see Figure 2.

3. After the 6-hour incubation is complete, proceed to Section 4.F.
4.F. Adding Bio-Glo™ Reagent

Note: Bio-Glo™ Reagent should be at ambient temperature (22–25°C) when added to assay plates.

1. Remove assay plate from the incubator, remove the plate lid and equilibrate to ambient temperature for 10–15 minutes.
2. Using a multichannel pipette, add 75µl of Bio-Glo™ Reagent to the inner 60 wells of the assay plate, taking care not to create bubbles.
3. Add 75µl of Bio-Glo™ Reagent to wells B1, C1 and D1 of the assay plate to measure the background signal.
4. Incubate at ambient temperature for 5–10 minutes. **Note:** Varying the incubation time will affect the raw relative light unit (RLU) values but should not significantly change the EC$_{50}$ value and fold induction.
5. Measure luminescence using a luminometer or luminescence plate reader.

4.G. Data Analysis

1. Measure plate background by calculating the average RLU from wells B1, C1 and D1.
2. Calculate fold induction = $\frac{RLU \text{ (sample–background)}}{RLU \text{ (no drug control–background)}}$

Note: When calculating fold induction, if the no-drug control sample RLU is at least 100X the plate background RLU, there is no need to subtract plate background from sample RLU.

3. Graph data as RLU versus Log$_{10}$[sample] and fold induction versus Log$_{10}$[sample]. Fit curves and determine the EC$_{50}$ value of the IL-23 response using appropriate curve fitting software (such as GraphPad Prism®).
5. Inhibition Protocol

IL-23 Bioassay Cells can be used to measure inhibition of IL-23 signaling using a blocking antibody such as ustekinumab, which targets the p40 subunit of IL-23. A preliminary stimulation experiment with IL-23 is necessary to determine the EC\textsubscript{80} concentration, which is used for an inhibition assay. To facilitate workflow, a 5-hour stimulation can be used instead of the 6 hours recommended in the stimulation protocol. The IL-23 Bioassay Cells can be plated during the antibody + cytokine pre-incubation. This inhibition assay uses an 11-point dilution series due to the response seen with ustekinumab. This inhibition protocol can be modified for other blocking antibodies, depending on their mechanism of action.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>no drug</td>
<td>dilu 10</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>Reference Sample</td>
</tr>
<tr>
<td>B</td>
<td>no drug</td>
<td>dilu 10</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>Reference Sample</td>
</tr>
<tr>
<td>C</td>
<td>no drug</td>
<td>dilu 10</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>Test Sample 1</td>
</tr>
<tr>
<td>D</td>
<td>no drug</td>
<td>dilu 10</td>
<td>dilu9</td>
<td>dilu8</td>
<td>dilu7</td>
<td>dilu6</td>
<td>dilu5</td>
<td>dilu4</td>
<td>dilu3</td>
<td>dilu2</td>
<td>dilu1</td>
<td>Test Sample 2</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Figure 12. Example plate layout showing reference and test sample 11-point serial dilutions. Wells A2, B2, C2 and D2 contain 120µl of assay buffer without sample as a negative control.
5.A. Preparing Antibody Dilutions

1. Prepare serial dilutions of ustekinumab antibody in warm assay buffer as 6X final concentration. We recommend a final concentration of ustekinumab of 0–75µg/ml as serial fourfold dilutions, using an 11-point dilution series.

2. To a sterile clear 96-well plate, add 80µl of reference antibody sample starting dilution (dilu1, 6X final concentration) to wells A12 and B12 (see Figure 12).

3. Add 80µl of test antibody samples 1 and 2 starting dilution (dilu1, 6X final concentration) to wells C12 and D12.

4. Add 60µl of assay buffer to the other wells in these four rows, from column 11 to column 2.

5. Transfer 20µl of the sample starting dilutions from column 12 into column 11. Mix well by pipetting. Avoid creating bubbles.

6. Repeat equivalent fourfold serial dilutions across the columns from right to left until you reach column 3. Remove 20µl from column 3 so that all wells have a volume of 60µl. Do not dilute into column 2.

7. Prepare IL-23 in warm assay buffer at 6X the predetermined EC$_{50}$ response concentration.

8. Combine an equal volume of IL-23 (60µl) with each antibody dilution (60µl). Mix by pipetting. Note: Each component is now at 3X its final concentration.

9. Incubate IL-23 and antibody samples for 75 minutes in a humidified 37°C, 5% CO$_2$ incubator.

10. Proceed to Section 5.B. to plate the bioassay cells.

<table>
<thead>
<tr>
<th>Recommended Plate Layout Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td>H</td>
</tr>
</tbody>
</table>

Figure 13. Example plate layout. This suggested layout shows nonclustered locations for three replicates of each test and reference sample dilution series (dilu1–dilu10) and wells containing assay buffer alone (denoted by “B”).
5.B. Plating IL-23 Bioassay Cells

The thaw-and-use IL-23 Bioassay Cells included in this kit are sensitive; carefully follow the cell thawing and plating procedures exactly as described. Do not overmix or overwarm the cell reagents. No additional cell culture or manipulation is required. We recommend that you thaw and dilute a maximum of two vials of thaw-and-use cells at a time.

For the inhibition protocol described here, use the plate layout illustrated in Figure 13 as a guide. The protocol describes serial replicate dilutions (n = 3) of test and reference samples to generate two 11-point dose-response curves for each plate.

1. Remove one vial of IL-23 Bioassay Cells from storage at −140°C and transfer to the bench on dry ice.
2. Add 10.4ml of prewarmed (37°C) assay buffer to a 15ml conical tube.
3. Warm the cells in a 37°C water bath until just thawed (about 2 minutes). While thawing, gently agitate and visually inspect. Try not to submerge the vial completely. Do not invert the vial.
4. Gently mix the cell suspension by pipeting, then transfer 0.65ml of the cells to the 15ml conical tube containing 10.4ml of assay buffer. Mix well by gently pipeting or inverting 5 times.
5. Transfer the cell suspension to a sterile reagent reservoir.
6. Using a multichannel pipette, immediately dispense 50µl of the cell suspension to each of the inner 66 wells (B2–G12) of two 96-well assay plates. Optimal results depend on gently keeping the cells evenly resuspended during the plating process.
7. Add 75µl/well of warm assay buffer to the outer 30 wells of each plate.
8. Cover each assay plate with a lid and incubate at 37°C in a 5% CO₂ incubator for the remainder of the antibody + cytokine pre-incubation.

5.C. IL-23 Inhibition Assay

1. After the antibody + cytokine pre-incubation is complete, use a multichannel pipette to dispense 25µl of each antibody dilution sample to the 50µl of preplated cells.
2. Incubate for 5 hours (as done for preliminary EC₈₀ concentration determination) in a humidified, 37°C, 5% CO₂ incubator.
3. After the 5-hour incubation is complete, proceed to Section 5.D.
5.D. Adding Bio-Glo™ Reagent

Note: Bio-Glo™ Reagent should be at ambient temperature (22–25°C) when added to assay plates. Due to the 11-point dilution curve and 66 wells per plate being used for assay, 70µl/well of Bio-Glo™ Reagent is added to 75µl/well sample in the plate.

1. Remove the assay plate from the incubator, remove the plate lid and equilibrate to ambient temperature for 10–15 minutes.
2. Using a multichannel pipette, add 70µl of Bio-Glo™ Reagent to the inner 66 wells of the assay plate, taking care not to create bubbles.
3. Add 70µl of Bio-Glo™ Reagent to wells B1, C1 and D1 of the assay plate to measure the background signal.
4. Incubate at ambient temperature for 5–10 minutes.
 Note: Varying the incubation time will affect the raw relative light unit (RLU) values but should not significantly change the IC₅₀ value and fold induction.
5. Measure luminescence using a luminometer or luminescence plate reader.

5.E. Data Analysis

1. Measure plate background by calculating the average RLU from wells B1, C1 and D1.
2. Calculate fold induction = \(\frac{\text{RLU (sample–background)}}{\text{RLU (no drug control–background)}} \)
 Note: When calculating fold induction, if the no-drug control sample RLU is at least 100X the plate background RLU, there is no need to subtract plate background from sample RLU.
3. Graph data as RLU versus Log₁₀[sample] and fold induction versus Log₁₀[sample]. Fit curves and determine the IC₅₀ value of the IL-23 response using appropriate curve fitting software (such as GraphPad Prism® software).
6. Troubleshooting

For questions not addressed here, please contact your local Promega Branch Office or Distributor. Contact information available at: www.promega.com E-mail: techserv@promega.com

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low luminescence measurements (RLU readout)</td>
<td>Choose an instrument designed for plate-reading luminescence detection. Instruments designed primarily for fluorescence detection are not recommended. Luminometers measure and report luminescence as relative values, and actual RLU numbers will vary between instruments.</td>
</tr>
<tr>
<td></td>
<td>Insufficient cells per well can lead to low RLU. Handle and plate the cells according to the instructions to ensure a sufficient number of viable cells per well.</td>
</tr>
<tr>
<td></td>
<td>Low cell viability can lead to low luminescence readout and variability in assay performance.</td>
</tr>
<tr>
<td></td>
<td>Low activity of Bio-Glo™ Reagent leads to low RLU. Store and handle the Bio-Glo™ Reagent according to the instructions.</td>
</tr>
<tr>
<td>Assay performance is variable</td>
<td>Ensure that incubation times are consistent between assays.</td>
</tr>
<tr>
<td></td>
<td>Ensure that the Preparing and Plating protocols are strictly followed.</td>
</tr>
<tr>
<td></td>
<td>Ensure that IL-23 is prepared and stored properly with carrier protein. Follow manufacturer’s protocol for initial rehydration of cytokine. Single-use frozen aliquots are recommended for each assay.</td>
</tr>
<tr>
<td></td>
<td>IL-23 lot-to-lot activity differences may be observed. Consult cytokine provider for details.</td>
</tr>
<tr>
<td>Weak assay response (low fold induction)</td>
<td>IL-23 frozen single-use aliquot has lost biological activity. Follow manufacturer’s recommendation for storage and stability.</td>
</tr>
<tr>
<td></td>
<td>If untreated control RLU is less than 100X above plate reader background RLU, subtract plate reader background RLU from all samples prior to calculating fold induction.</td>
</tr>
</tbody>
</table>
7. References

8. Related Products

Cytokine and Growth Factor Bioassays

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2 Bioassay</td>
<td>1 each</td>
<td>JA2201</td>
</tr>
<tr>
<td>IL-2 Bioassay 5X</td>
<td>1 each</td>
<td>JA2205</td>
</tr>
<tr>
<td>IL-2 Bioassay, Propagation Model</td>
<td>1 each</td>
<td>J2952</td>
</tr>
<tr>
<td>IL-6 Bioassay</td>
<td>1 each</td>
<td>JA2501</td>
</tr>
<tr>
<td>IL-6 Bioassay 5X</td>
<td>1 each</td>
<td>JA2505</td>
</tr>
<tr>
<td>IL-6 Bioassay, Propagation Model</td>
<td>1 each</td>
<td>J2992</td>
</tr>
<tr>
<td>IL-12 Bioassay</td>
<td>1 each</td>
<td>JA2601</td>
</tr>
<tr>
<td>IL-12 Bioassay 5X</td>
<td>1 each</td>
<td>JA2605</td>
</tr>
<tr>
<td>IL-12 Bioassay, Propagation Model</td>
<td>1 each</td>
<td>J3042</td>
</tr>
<tr>
<td>IL-15 Bioassay</td>
<td>1 each</td>
<td>JA2011</td>
</tr>
<tr>
<td>IL-15 Bioassay 5X</td>
<td>1 each</td>
<td>JA2015</td>
</tr>
<tr>
<td>IL-15 Bioassay, Propagation Model</td>
<td>1 each</td>
<td>J2962</td>
</tr>
<tr>
<td>IL-23 Bioassay, Propagation Model</td>
<td>1 each</td>
<td>J3002</td>
</tr>
<tr>
<td>VEGF Bioassay</td>
<td>1 each</td>
<td>GA2001</td>
</tr>
<tr>
<td>VEGF Bioassay 5X</td>
<td>1 each</td>
<td>GA2005</td>
</tr>
<tr>
<td>VEGF Bioassay, Cell Propagation Model</td>
<td>1 each</td>
<td>GA1082</td>
</tr>
<tr>
<td>Recombinant VEGF</td>
<td>10µg</td>
<td>J2371</td>
</tr>
</tbody>
</table>

Not for Medical Diagnostic Use.

T Cell Activation Bioassays

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Cell Activation Bioassay (NFAT)</td>
<td>1 each</td>
<td>J1621</td>
</tr>
<tr>
<td>T Cell Activation Bioassay (NFAT) 5X</td>
<td>1 each</td>
<td>J1625</td>
</tr>
<tr>
<td>T Cell Activation Bioassay (IL-2)</td>
<td>1 each</td>
<td>J1651</td>
</tr>
<tr>
<td>T Cell Activation Bioassay (IL-2) 5X</td>
<td>1 each</td>
<td>J1655</td>
</tr>
</tbody>
</table>

Not for Medical Diagnostic Use.
<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD40 Bioassay</td>
<td>1 each</td>
<td>JA2151</td>
</tr>
<tr>
<td>CD40 Bioassay 5X</td>
<td>1 each</td>
<td>JA2155</td>
</tr>
<tr>
<td>CD40 Bioassay, Propagation Model</td>
<td>1 each</td>
<td>J2132</td>
</tr>
<tr>
<td>Control Ab, Anti-CD40</td>
<td>50μg</td>
<td>K1181</td>
</tr>
<tr>
<td>GITR Bioassay</td>
<td>1 each</td>
<td>JA2291</td>
</tr>
<tr>
<td>GITR Bioassay 5X</td>
<td>1 each</td>
<td>JA2295</td>
</tr>
<tr>
<td>GITR Bioassay, Propagation Model</td>
<td>1 each</td>
<td>J2272</td>
</tr>
<tr>
<td>Control Ab, Anti-GITR</td>
<td>50μg</td>
<td>K1171</td>
</tr>
<tr>
<td>LAG-3/MHCII Blockade Bioassay</td>
<td>1 each</td>
<td>JA1111</td>
</tr>
<tr>
<td>LAG-3/MHCII Blockade Bioassay 5X</td>
<td>1 each</td>
<td>JA1115</td>
</tr>
<tr>
<td>LAG-3/MHCII Blockade Bioassay, Propagation Model</td>
<td>1 each</td>
<td>JA1112</td>
</tr>
<tr>
<td>TCR Activating Antigen Stock Solution</td>
<td>500μl</td>
<td>K1201</td>
</tr>
<tr>
<td>Control Ab, Anti-LAG-3</td>
<td>100μg</td>
<td>K1150</td>
</tr>
<tr>
<td>PD-1/PD-L1 Blockade Bioassay</td>
<td>1 each</td>
<td>J1250</td>
</tr>
<tr>
<td>PD-1/PD-L1 Blockade Bioassay 5X</td>
<td>1 each</td>
<td>J1255</td>
</tr>
<tr>
<td>PD-L1 Negative Cells</td>
<td>1 each</td>
<td>J1191</td>
</tr>
<tr>
<td>Control Ab, Anti-PD-1</td>
<td>100μg</td>
<td>J1201</td>
</tr>
<tr>
<td>CTLA-4 Blockade Bioassay</td>
<td>1 each</td>
<td>JA3001</td>
</tr>
<tr>
<td>CTLA-4 Blockade Bioassay 5X</td>
<td>1 each</td>
<td>JA3005</td>
</tr>
<tr>
<td>Control Antibody, Anti-CTLA-4</td>
<td>100μg</td>
<td>JA1020</td>
</tr>
<tr>
<td>TIGIT Negative Cells</td>
<td>1 each</td>
<td>J1921</td>
</tr>
<tr>
<td>PD-1+TIGIT Combination Bioassay</td>
<td>1 each</td>
<td>J2211</td>
</tr>
<tr>
<td>PD-1+TIGIT Combination Bioassay 5X</td>
<td>1 each</td>
<td>J2215</td>
</tr>
<tr>
<td>Control Ab, Anti-TIGIT</td>
<td>100μg</td>
<td>J2051</td>
</tr>
<tr>
<td>4-1BB Bioassay</td>
<td>1 each</td>
<td>JA2351</td>
</tr>
<tr>
<td>4-1BB Bioassay 5X</td>
<td>1 each</td>
<td>JA2355</td>
</tr>
<tr>
<td>4-1BB Bioassay, Propagation Model</td>
<td>1 each</td>
<td>J2332</td>
</tr>
<tr>
<td>Control Ab, Anti-4-1BB</td>
<td>50μg</td>
<td>K1161</td>
</tr>
</tbody>
</table>

8. Related Products (continued)

Fc Effector Bioassays

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCC Reporter Bioassay, Complete Kit (Raji)*</td>
<td>1 each</td>
<td>G7015</td>
</tr>
<tr>
<td>ADCC Reporter Bioassay, Target Kit (Raji)*</td>
<td>1 each</td>
<td>G7016</td>
</tr>
<tr>
<td>ADCC Reporter Bioassay, Core Kit*</td>
<td>1 each</td>
<td>G7010</td>
</tr>
<tr>
<td>ADCC Reporter Bioassay, F Variant, Core Kit**</td>
<td>1 each</td>
<td>G9790</td>
</tr>
<tr>
<td>FcγRIIa-H ADCP Reporter Bioassay, Complete Kit**</td>
<td>1 each</td>
<td>G9901</td>
</tr>
<tr>
<td>FcγRIIa-H ADCP Reporter Bioassay, Core Kit**</td>
<td>1 each</td>
<td>G9991</td>
</tr>
</tbody>
</table>

*For Research Use Only. Not for use in diagnostic procedures.

**Not for Medical Diagnostic Use.

Additional kit formats are available.

Detection Reagents

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-Glo™ Luciferase Assay System</td>
<td>10ml</td>
<td>G7941</td>
</tr>
<tr>
<td></td>
<td>100ml</td>
<td>G7940</td>
</tr>
</tbody>
</table>

Not for Medical Diagnostic Use.

Luminometers

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>GloMax® Discover System</td>
<td>1 each</td>
<td>GM3000</td>
</tr>
</tbody>
</table>

For Research Use Only. Not For Use in Diagnostic Procedures.

9. Summary of Changes

The following change was made to the 3/20 revision of TM609:

In Section 2. Product Components and Storage Conditions, the amount of RPMI 1640 Medium was changed to 36ml.
(a) NOT FOR MEDICAL DIAGNOSTIC USE. FOR IN VITRO USE ONLY. BY USE OF THIS PRODUCT, RECIPIENT AGREES TO BE BOUND BY THE TERMS OF THIS LIMITED USE STATEMENT. If the recipient is not willing to accept the conditions of this limited use statement, and the product is unused, Promega will accept return of the unused product and provide the recipient with a full refund.

This product may not be further sold or transferred by the recipient and may be used only by the recipient, and then only for (1) research use, (2) discovery, development and monitoring of biologic drugs and vaccines, (3) quality assurance testing of biologic drugs and vaccines, and (4) product release assays for biologic drugs and vaccines. No other commercial use is allowed. “Commercial use” means any and all uses of this product by recipient for monetary or other consideration, including providing a service, information or data to unaffiliated third parties, and resale of this product for any use. Recipient has no right to propagate, modify, derivatize, genetically engineer or otherwise create variations of the cells or genes stably transfected within the cells. In addition, recipient must use Bio-Glo™ Luciferase Assay System purchased from Promega Corporation for all luminescence assays using this product or contact Promega to obtain a license for use of this product with reagents other than Promega’s. PROMEGA MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING AS TO MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE WITH REGARDS TO THIS PRODUCT. The terms of this agreement shall be governed under the laws of the State of Wisconsin, USA.

(b) Cells were obtained under license from AdVec Inc.

(c) U.S. Pat. No. 8,008,006 and European Pat. No. 1341808.

(d) Patents Pending.

(e) U.S. Pat. No. 10,077,244 and other patents.

© 2020 Promega Corporation. All Rights Reserved.

GloMax is a registered trademark of Promega Corporation. Bio-Glo is a trademark of Promega Corporation.

Corning is a registered trademark of Corning, Inc. GraphPad Prism is a registered trademark of GraphPad Software, Inc. JMP is a registered trademark of SAS Institute, Inc.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.