AXL, Active
Recombinant human protein expressed in Sf9 cells

Catalog # A34-11H-10
Lot # L214-3

Product Description
Recombinant human AXL (473-end) was expressed by baculovirus in Sf9 insect cells using an N-terminal His tag. The gene accession number is NM_021913.

Gene Aliases
UFO, JTK1

Concentration
0.1μg/μl

Formulation
Recombinant protein stored in 50mM sodium phosphate, pH 7.0, 300mM NaCl, 150mM imidazole, 0.1mM PMSF, 0.25mM DTT, 25% glycerol.

Storage, Shipping and Stability
Store product at –70°C. For optimal storage, aliquot target into smaller quantities after centrifugation and store at recommended temperature. For most favorable performance, avoid repeated handling and multiple freeze/thaw cycles. Stability is 1yr at –70°C from date of shipment. Product shipped on dry ice.

Scientific Background
AXL is a member of the receptor tyrosine kinase family which has oncogenic potential and is implicated in human myeloid leukemia (1). AXL is a member of a complex signaling network that is involved in the control of cell proliferation and differentiation. Overexpression of AXL cDNA in NIH 3T3 cells induces neoplastic transformation of these cells with the concomitant appearance of a 140kDa AXL tyrosine-phosphorylated protein (2). Expression of AXL cDNA in the baculovirus system results in the expression of the appropriate recombinant protein that is recognized by antiphosphotyrosine antibodies, confirming that the AXL protein is tyrosine phosphorylated.

References

Purity
The purity of AXL was determined to be >80% by densitometry. Approx. MW 55kDa.

Specific Activity
The specific activity of AXL was determined to be 98 nmol/min/mg as per activity assay protocol.

For Radiometric Assay Protocol on this product please see pg. 2

For ADP-Glo™ Assay Protocol on this product please see pg. 3
Activity Assay Protocol

Reaction Components

Active Kinase (Catalog #: A34-11H-10)
Active AXL (0.1 μg/μl) diluted with Kinase Dilution Buffer III (Catalog #: K23-09) and assayed as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active AXL for optimal results).

Kinase Dilution Buffer III (Catalog #: K23-09)
Kinase Assay Buffer I (Catalog #: K01-09) diluted at a 1:4 ratio (5X dilution) with final 50 ng/μl BSA solution.

Kinase Assay Buffer I (Catalog #: K01-09)
Buffer components: 25mM MOPS, pH 7.2, 12.5mM β-glycerol-phosphate, 25mM MgCl₂, 5mM EGTA, 2mM EDTA. Add 0.25mM DTT to Kinase Assay Buffer prior to use.

[33P]-ATP Assay Cocktail
Prepare 250μM [33P]-ATP Assay Cocktail in a designated radioactive working area by adding the following components: 150μl of 10mM ATP Stock Solution (Catalog #: A50-09), 100μl [33P]-ATP (1mCi/100μl), 5.75ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 1ml aliquots at –20°C.

10mM ATP Stock Solution (Catalog #: A50-09)
Prepare ATP stock solution by dissolving 55mg of ATP in 10ml of Kinase Assay Buffer I (Catalog #: K01-09). Store 200μl aliquots at –20°C.

Substrate (Catalog #: A16-58)
Axltide synthetic peptide substrate (KKSRGDYMTMQI) diluted in distilled H₂O to a final concentration of 1mg/ml.

Assay Protocol

Step 1. Thaw [33P]-ATP Assay Cocktail in shielded container in a designated radioactive working area.

Step 2. Thaw the Active AXL, Kinase Assay Buffer, Substrate and Kinase Dilution Buffer on ice.

Step 3. In a pre-cooled microfuge tube, add the following reaction components bringing the initial reaction volume up to 20μl:

- **Component 1.** 10μl of diluted Active AXL (Catalog #A34-11H-10)
- **Component 2.** 5μl of 1mg/ml stock solution of substrate (Catalog #A16-58)
- **Component 3.** 5μl distilled H₂O (4°C)

Step 4. Set up the blank control as outlined in step 3, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H₂O.

Step 5. Initiate the reaction by the addition of 5μl [33P]-ATP Assay Cocktail bringing the final volume up to 25μl and incubate the mixture in a water bath at 30°C for 15 minutes.

Step 6. After the 15 minute incubation period, terminate the reaction by spotting 20μl of the reaction mixture onto individual pre-cut strips of phosphocellulose P81 paper.

Step 7. Air dry the pre-cut P81 strip and sequentially wash in a 1% phosphoric acid solution (dilute 10ml of phosphoric acid and make a 1L solution with distilled H₂O) with constant gentle stirring. It is recommended that the strips be washed a total of 3 intervals for approximately 10 minutes each.

Step 8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.

Step 9. Determine the corrected cpm by removing the blank control value (see Step 4) for each sample and calculate the kinase specific activity as outlined below.

Calculation of [P³³]-ATP Specific Activity (SA) (cpm/pmol)

Specific activity (SA) = cpm for 5μl [³³P]-ATP / pmoles of ATP (in 5μl of a 250 μM ATP stock solution, i.e., 1250 pmoles)

Kinase Specific Activity (SA) (pmol/min/µg or nmol/min/mg)

Corrected cpm from reaction / [(SA of [³³P]-ATP in cpm/pmol) * (Reaction time in min) * (Enzyme amount in µg or mg) * (Spot Volume) / (Reaction Volume)]

FOR IN VITRO RESEARCH PURPOSES ONLY. NOT INTENDED FOR USE IN HUMAN OR ANIMALS.
ADP-Glo™ Activity Assay Protocol

Reaction Components

AXL Kinase Enzyme System
(Promega, Catalog #: V3961)
- AXL, Active, 10μg (0.1μg/μl)
- Axltide peptide, substrate, 1ml (1mg/ml)
- Reaction Buffer A (5X), 1.5ml
- DTT solution (0.1M), 25μl

ADP-GloTM Kinase Assay Kit
(Promega, Catalog #: V9101)
- Ultra Pure ATP, 10 mM (0.5ml)
- ADP, 10 mM (0.5ml)
- ADP-Glo™ Reagent (5ml)
- Kinase Detection Buffer (10ml)
- Kinase Detection Substrate (Lyophilized)

Reaction Buffer A (5X)
200mM Tris-HCl, pH 7.5, 100mM MgCl2 and 0.5 mg/ml BSA.

Assay Protocol

The AXL assay is performed using the AXL Kinase Enzyme System (Promega; Catalog #: V3961) and ADP-Glo™ Kinase Assay kit (Promega; Catalog #: V9101). The AXL reaction utilizes ATP and generates ADP. Then the ADP-Glo™ Reagent is added to simultaneously terminate the kinase reaction and deplete the remaining ATP. Finally, the Kinase Detection Reagent is added to convert ADP to ATP and the newly synthesized ATP is converted to light using the luciferase/luciferin reaction. For more detailed protocol regarding the ADP-Glo™ Kinase Assay, see the technical Manual #TM313, available at www.promega.com/tbs/tm313/tm313.html.

Step 1. Thaw the ADP-Glo™ Reagents at ambient temperature. Then prepare Kinase Detection Reagent by mixing Kinase Detection Buffer with the Lyophilized Kinase Detection Substrate. Set aside.

Step 2. Thaw the components of AXL Enzyme System, ADP and ATP on ice.

Step 3. Prepare 1ml of 2X Buffer by combining 400μl Reaction Buffer A, 1μl DTT and 599μl of dH2O.

Step 4. Prepare 1ml of 250μM ATP Assay Solution by adding 25μl ATP solution (10mM) to 500μl of 2X Buffer and 475μl of dH2O.

Step 5. Prepare diluted AXL in 1X Buffer (diluted from 2X buffer) as outlined in sample activity plot. (Note: these are suggested working dilutions and it is recommended that the researcher perform a serial dilution of Active AXL for optimal results).

Step 6. In a white 96-well plate (Corning Cat # 3912), add the following reaction components bringing the initial reaction volume up to 20μl:
- Component 1. 10μl of diluted Active AXL
- Component 2. 5μl of 1mg/ml stock solution of substrate
- Component 3. 5μl of 2X Buffer

Step 7. Set up the blank control as outlined in step 6, excluding the addition of the substrate. Replace the substrate with an equal volume of distilled H2O.

Step 8. At the same time as the AXL kinase reaction, set up an ATP to ADP conversion curve at 50μM ATP/ADP range as described in the ADP-Glo™ Kinase Assay technical Manual #TM313.

Step 9. Initiate the AXL reactions by the addition of 25μl of 250μM ATP Assay Solution thereby bringing the final volume up to 25μl. Shake the plate and incubate the reaction mixture at 30°C for 15 minutes.

Step 10. Terminate the reaction and deplete the remaining ATP by adding 25μl of ADP-Glo™ Reagent. Shake the 96-well plate and then incubate the reaction mixture for another 40 minute at ambient temperature.

Step 11. Add 50μl of the Kinase Detection Reagent, shake the plate and then incubate the reaction mixture for another 30 minute at ambient temperature.

Step 12. Read the 96-well reaction plate using the Kinase-Glo™ Luminescence Protocol on GloMax® Microplate Luminometer (Promega; Cat # E6501).

Step 13. Using the conversion curve, determine the amount of ADP produced (nmol) in the presence (step 6) and absence of substrate (Step 7) and calculate the kinase specific activity as outlined below. For a detailed protocol of how to determine nmols from RLUs, see ADP-Glo™ Applications Database at http://www.promega.com/applications/cellularanalysis/cellsignaling.htm

Kinase Specific Activity (SA) (nmol/min/mg)

\[
\text{(ADP (step 6) – ADP (Step 7)) in nmol) / (Reaction time in min)} \times \text{Enzyme amount in mg)
\]