ABSTRACT

Stem cells and related proteins are the focus of many scientific studies. The ability to label specific proteins within stem cells may provide important information about protein dynamics and function. Here we use a technology to covalently tether different wavelength fluorophores to a specially designed reporter, the HaloTag® protein. The HaloTag® protein, either alone or fused to a protein of interest, was expressed in human neural stem cells (hNSC) and successfully labeled with several HaloTag® Ligands. The different colored cell-impermeant and cell-permeant fluorophores showed spatial separation and real-time translocation of membrane and internal protein pools in live hNSC. In addition, the HaloTag® protein continued to be expressed after hNSC differentiation into neurons and astrocytes. Thus, the HaloTag® technology can be used to study proteins of interest, and as such, represents a new research tool to further reveal protein biology in stem cells.

By Soshana Svendsen, Ph.D. 1, Erin McMillan, B.S. 2, Chad Zimprich, B.S. 1, Clive N. Svendsen, Ph.D. 2, Georgyi V. Los, Ph.D. 1, 1Promega Corporation, 2University of Wisconsin-Madison

INTRODUCTION

Specific labeling of proteins in live cells may provide details about their functions and dynamics within complex intracellular environments. The development of new methods for labeling proteins by genetic fusion is expanding the understanding of cellular biology. Stem cells are being used to study basic biology, to screen drugs, and to model and potentially treat human diseases (1). Here, we use the HaloTag® technology (a–c) in human neural stem cells (hNSC) to visualize the HaloTag® reporter protein alone and fused to proteins of interest.

HALOTAG® TECHNOLOGY OVERVIEW

The HaloTag® technology permits tethering of different wavelength fluorophores to a reporter protein with a single genetic construct (2). The HaloTag® reporter protein is an engineered, catalytically inactive derivative of a bacterial hydrolase that forms a covalent bond with HaloTag® ligands. The HaloTag® ligands contain two crucial components: a common HaloTag® reactive linker that forms a covalent bond with the HaloTag® protein and a functional reporter (e.g., a fluorescent dye) or an affinity tag (e.g., biotin).

HALOTAG® EXPRESSION AND LABELING IN HUMAN NEURAL STEM CELLS

We used stem cells derived from the developing human central nervous system, which are then maintained as spheres of cells termed neurospheres (Figure 1, Panel A; 3). Neurospheres can be transfected after single-cell dissociation, then plated and differentiated into mature neural phenotypes. Previously, we showed expression of the HaloTag® protein in a variety of mammalian cell lines (2), and now we have expressed the HaloTag® reporter protein in hNSC. Cells appeared healthy and had normal morphology after expressing the HaloTag® reporter protein and labeling with HaloTag® TMR Ligand (Figure 1, Panel B).

Figure 1. HaloTag® reporter protein expression in neural stem cells. Panel A. Stem cells derived from the central nervous system were maintained as neurospheres, which can be transfected after single-cell dissociation, plated and differentiated into mature neural phenotypes. Panel B. Human neural stem cells were dissociated to single cells and transfected with the HaloTag® expression vector. Forty-eight hours after plating, cells were labeled with 5µM HaloTag®TMR Ligand for 15 minutes at 37°C, rinsed and imaged with an Olympus FV500 confocal microscope using the appropriate filter set.
untransfected were labeled with the HaloTag® TMR Ligand, then fixed and processed for ICC using antibodies against β-tubulin, a neuronal marker, and glial fibrillary acidic protein (GFAP), an astrocytic marker (Figure 3, Panel C). The results showed that the HaloTag® protein is still expressed after the transfected hNSC have differentiated into neurons and astrocytes.

To complement the qualitative ICC results, we quantified the percent total cells transfected with HaloTag®-(NLS)3 protein and the percent total cells that differentiated into neurons and astrocytes. From the total number of plated and transfected hNSC, approximately 30% were expressing HaloTag® protein (based on HaloTag® TMR Ligand labeling), 70% were astrocytes (based on GFAP labeling) and 20% were neurons (based on β-tubulin labeling; Figure 3, Panel C). The remaining cells likely represent undifferentiated neural progenitor cells. Human NSC appear to tolerate the HaloTag® protein since their differentiation rates are consistent with previous reports (3). Within differentiated cells expressing HaloTag®-(NLS)3 fusion protein, approximately 45% were astrocytes, and 30% were neurons (Figure 3, Panel D). This difference was not significant, suggesting that the HaloTag® reporter protein had no selective effects on cell type survival or differentiation.

PROTEIN LABELING

The HaloTag® protein is still expressed after the transfected human NSC have differentiated into neurons and astrocytes.
PROTEIN LABELING

HALOTAG® PROTEIN SPATIAL AND TEMPORAL SEPARATION IN HUMAN NEURAL STEM CELLS

In mammalian cell lines, we have shown that the HaloTag® reporter protein fused to a truncated β1 integrin was expressed on the cell surface and could be labeled with the cell-impermeant fluorescent HaloTag® Alexa Fluor® 488 Ligand (6). We show that hNSC can also express the HaloTag® reporter protein fused to a truncated integrin. Human NSC were first labeled with the cell-impermeant HaloTag® Alexa Fluor® 488 Ligand and then labeled with the cell-permeant HaloTag® TMR Ligand (Figure 4, Panel A). Expression of the β1Int-HaloTag® protein and labeling with the HaloTag® Alexa Fluor® 488 Ligand caused no detectable morphological changes in hNSC.

Labeling of β1Int-HaloTag® fusion protein with a cell-impermeant HaloTag® Alexa Fluor® 488 Ligand followed by a cell-permeant HaloTag® TMR Ligand can also temporally distinguish two protein pools. Twelve hours after labeling of hNSC expressing the β1Int-HaloTag® fusion, live-cell imaging showed translocation of the differentially labeled protein pools, as the cell-impermeant green surface pool was internalized from the membrane and as the cell-permeant red internal pool was trafficked to the surface (Figure 4, Panel B).

CONCLUSION

The HaloTag® technology is a powerful tool to study proteins in live cells. Using neural stem cells, we showed that the HaloTag® technology can be used to follow labeled proteins in hNSC. We demonstrated hNSC can express the HaloTag® reporter protein alone and fused to proteins of interest. In addition, HaloTag®-expressing hNSC can be successfully labeled by multiple HaloTag® ligands. The HaloTag® protein was well-tolerated by hNSC and continued to be expressed following differentiation into neurons and astrocytes. Fusion to a NLS target sequence directed the HaloTag® protein to the proper subcellular compartment, and fusion to a truncated integrin provided surface-displayed HaloTag® protein in hNSC. Labeling of β1Int-HaloTag® fusion with cell-impermeant and permeant HaloTag® ligands showed both spatial separation of protein pools and translocation of surface and intracellular protein pools in hNSC. In conclusion, the HaloTag® technology provides a powerful and flexible tool to examine intracellular and membrane proteins of interest to stem cell biology.

REFERENCES

ORDERING INFORMATION

Ordering information is available on pages 27–28 or online at: www.promega.com/halotagordering/

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

Prior research use only. With respect to manufacture or sale of research products, or any diagnostic, therapeutic or prophylactic use, please contact Promega for supply and licensing information.

The fluorescent dye of this product is provided under an agreement between Molecular Probes, Inc., and Promega Corporation, and the manufacture, use, sale or import of this Product is subject to certain restrictions. Please contact Promega Corporation for further information or visit www.promega.com/catalog for complete label licensing information.

HaloTag is a registered trademark of Promega Corporation.

Alexa Fluor is a registered trademark of Molecular Probes, Inc.