Reference Yeast and Human Whole Cell Protein Extracts for Mass Spectrometry Instrument Performance Monitoring and Method Development

Sergei Saveliev, Ethan Strauss, Mike Rosenblatt and Marjeta Urh

Promega Corporation, Madison, WI

sergei.saveliev@promega.com

1. Introduction

To monitor mass spec instrument performance for proteomics applications and optimize protein mass spec sample preparation, a reference protein material of high complexity is required. Whole cell protein extracts provide this desired sample complexity. However, to be compatible with mass spec applications, such extracts should meet a number of design requirements:

- \checkmark compatibility with LC/MS (free of detergents, etc.)
- ✓ high protein integrity (minimal level of protein degradation and nonbiological PTMs)
- \checkmark compatibility with common sample preparation methods such as proteolysis, PTM enrichment and mass-tag labeling
- ✓ Lot-to-lot reproducibility

Here we describe whole cell protein extracts from yeast and human cells that meet the above criteria. Two extract formats have been developed: Pre-digested extracts (peptides); primary use - instrument performance

- monitoring
- Intact protein extracts; primary use optimization of sample preparation

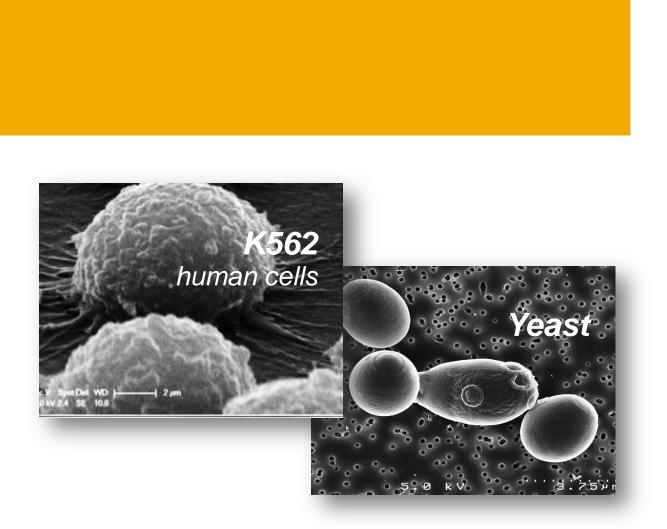
2. The extract features

Source

Human extract - from K562 cells Complex human proteome with a large dynamic range. Yeast extract - from Saccharomyces cerevisiae ~6,600 ORFs; all proteins quantified previously.

Extract preparation

Cell lysis


- The process is optimized to allow for minimal protein fragmentation. Instant inactivation of endogenous proteases to assure virtual lack
- of nonspecific cleavages. • Only the reagents compatible with LC and MS are used.

Sample preparation and digestion

- Strict control over the procedural steps assures that non-biological PTMs are maintained at lowest level.
- Proteins are exhaustively digested (less than 8% of missed tryptic
- cleavages).

Peptide clean-up and lyophilization

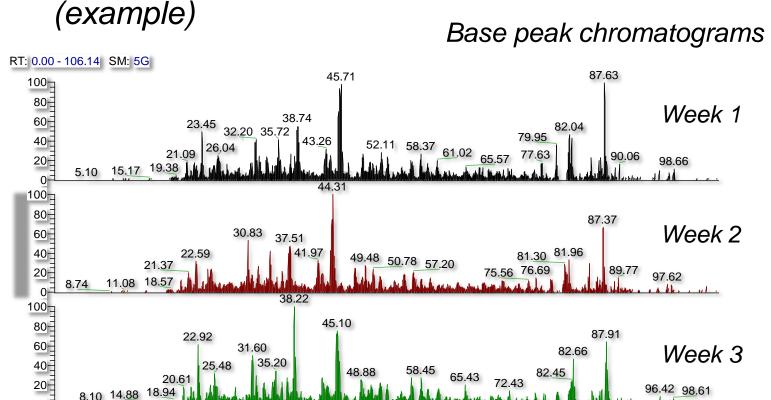
 Non-peptide material is removed with solid phase extraction (C₁₈). Peptides are dispensed in 100 ug aliquots with high accuracy and lyophilized for long term stability.

Extract	Human	Yeast
Identified proteins	2120	1637
Total spectra	26440	21264
Spectrum match	65%	52%
Unique peptides	16375	12079
Deamidation spectra	4.9%	6.5%
Oxidation spectra	0.6%	1.3%
Carbamylated spectra	0.2%	0.6%
Nonspecific cleavages	1%	2%
Missed tryptic cleavages	4.9%	4.8%

Q Exactive (Thermo), 2h gradient 1 ug extract injection

Strict control over all the steps of preparation protocol assures that the extracts meet the critical requirements of reference materials for mass spectrometry.

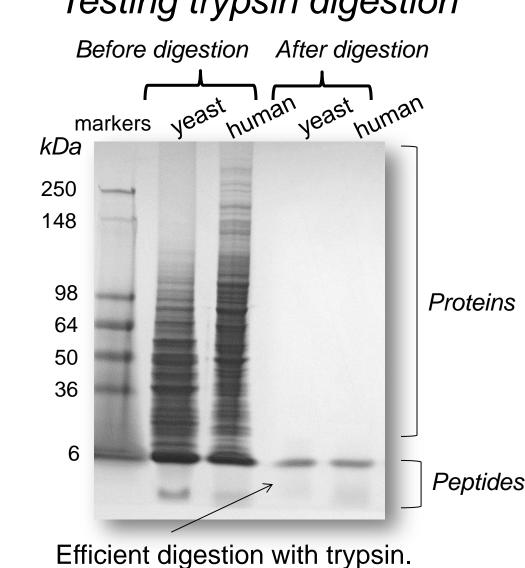
Mass spec analysis report for the extracts


3. Pre-digested extracts Reference material for instrument performance monitoring

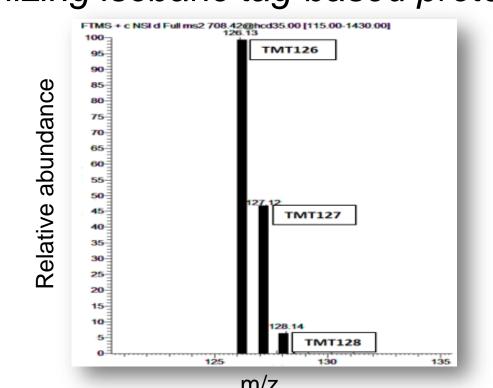
Features

- ✓ Full compatibility with LC and MS
- Ready for analysis no need to reduce, alkylate, digest, or clean-up the sample
- ✓ Efficiently digested (*less than 8% missed cleavages*)
- ✓ Highly pure (SPE C_{18} clean-up) ✓ Select material complexity you need – *relatively* small yeast proteome or complex human proteome with a large dynamic range

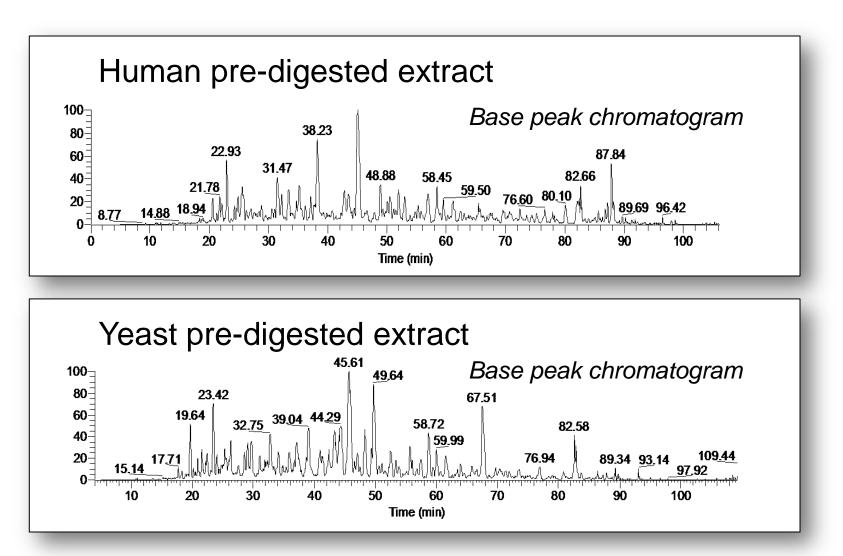
Applications


- ✓ Instrument performance monitoring
- ✓ Mass spec method optimization
- ✓ Interlaboratory instrument benchmarking Monitoring LC/MS instrument performance

nstrument performance (Waters NanoAquity HPLC system interfaced to a ThemoFisher Q Exactive) was monitored with human pre-digested extract (1ug injection, 2h gradient).


4. Intact extracts Test material for optimization of sample preparation

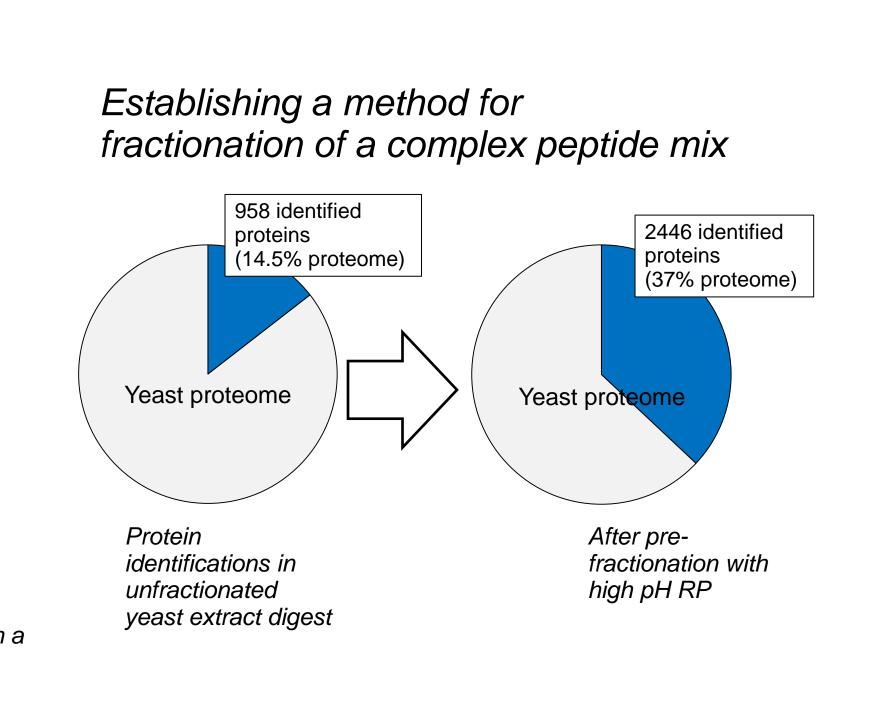
Testing trypsin digestion


Extract	Total peptides	Phosphopeptides	Phosphopeptide enrichment			
Yeast	2502	1715	68.5%			
Human	1768	1537	87%			
The extracts provided a good model system for establishing efficient						

Optimizing isobaric tag-based protein quantitation

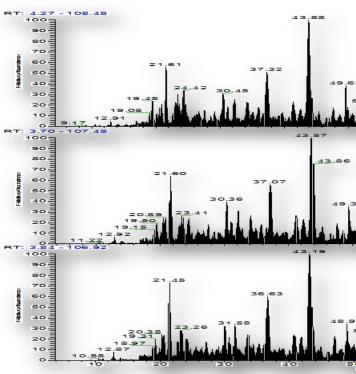
Three aliquots of the digested human extract were individually labeled with a specific TMT tag and mixed at 10:5:1 ratio. Good correlation between observed and expected protein quantitation levels was observed.

www.promega.com



Test results by different users

Instrument, laboratory and method	Pre- digested extract	Identified unique peptides	Identified proteins
Instrument #1,	yeast	12427	1567
Lab #1, method #1	human	18040	2370
Instrument #1,	yeast	27491	3096
Lab #2, method #2	human	46018	4664
Instrument #2,	yeast	11233	1220
Lab #3, method #3	human	10344	1588
Instrument #3,	yeast	14064	2703
Lab #4, method #4	human	19531	3885


Validating phosphopeptide enrichment method

phosphopeptide enrichment with TiO_2 resin.

4. Lot-to-lot reproducibility

Lot-to-lot reproducibil

Waters NanoAquity HPLC system interfaced to a Themo Fisher Q Exactive, 2h gradient, 1 ug extract injection.

Quantitation via SRM assay Courtesy by Dr. Koomen, Moffitt Cancer Center				Human extract Spectral counting			Yeast extract Spectral counting				
Protein	Peptide	Lot	Normalized abundance*	protein	lots			protein	lots		
					#1	#2	#3	Protein	#1	#2	#3
STAT3_HUMAN	TLTDEELADWK	Α	1.10	HS90B	155	157	153	YBR118W	358	375	368
		В	0.83	ACTG	116	113	113	YGR192C	356	344	335
		С	1.00	HS90A	134	130	129	YCR012W	369	336	304
STAT5A_HUMAN	LSPPAGLFTSAR	Α	0.92	PRKDC	126	129	116	YBR196C	153	153	146
		В	1.09	TBB5	96	96	99	YLR249W	130	129	128
		С	1.00	IF2P	18	17	17	YDL145C	23	22	25
	YYTPVLAK	Α	1.00	ANXA2	21	23	23	YDR261C-D	31	30	28
		В	1.09	DLDH	19	16	18	YKL035W	31	26	32
		С	0.93	PDIA4	21	27	22	YOR375C	28	32	28

GAPDH Normalized data

Lot-to-lot extract reproducibility with respect to protein composition and abundance

5. Conclusions

- extracts
- Our method allows for protein recovery with high reproducibility and minimal level of protein fragmentation or non-biological PTMs
- formats
 - instrument performance monitoring
 - □ Pre-digested extracts (tryptic peptides) serve the need of □ Intact protein extracts are designed for sample preparation
 - method development and optimization
- □ The extracts provide reference material for comprehensive LC/MS instrument validation, performance monitoring and method development. They can also be used as a model test material for optimizing protein mass spec sample preparation.

lity	y	
	Base Peak Chromatograms three human extract lots	of
ə.63	86.96	Lo

	578 107 <u>63</u>
32 57.02 57.82 64.32 70.82 75.64 75.64	Lot 2
in the second of the second	₽ <u>5</u> ,87 ₩₩₩₽₩₩₩₩₩₩₩₩₩

#1 #2 Lot **Identified proteins** 2101 2076 25116 25821 **Unique peptides** 4.9% 5.1% 5.0% **Deamidation spectra Oxidation spectra Nonspecific cleavages** 4.8% 4.6% % missed tryptic cleavages 4.8%

Quantitation via spectral counting

□ We developed MS ready whole cell yeast and human protein

□ The extracts are provided in two ready-to-use alternative