Yeast and human protein extracts for mass spectrometry method development and instrument validation

Sergei Saveliev, Ethan Strauss, Mike Rosenblatt and Marjeta Urh

Promega Corporation, Madison, WI

1. Introduction

To test protein mass spec sample preparation procedures and validate mass spec instrument performance, complex biological samples are required. Total cell protein extracts provide this desired sample complexity. However, to be compatible with mass spec applications, such extracts should meet a number of design requirements:

- ✓ compatibility with LC/MS (free of detergents, etc.)
- ✓ high protein integrity (minimal level of protein degradation and nonbiological PTMs)
- ✓ compatibility with common sample preparation methods such as proteolysis, PTM enrichment and mass-tag labeling
- ✓ Lot-to-lot reproducibility

Here we describe total protein extracts from yeast and human cells that meet the above criteria. Two extract formats have been developed: Intact protein extracts; primary use - sample preparation method

- development and optimization
- Pre-digested extracts (peptides); primary use instrument validation and performance monitoring

2. The extract description

Source

Yeast extract – from Saccharomyces cerevisiae ~6,600 ORFs; all proteins quantified previously. *Human extract* – from K562 cells Complex human proteome with a large dynamic range.

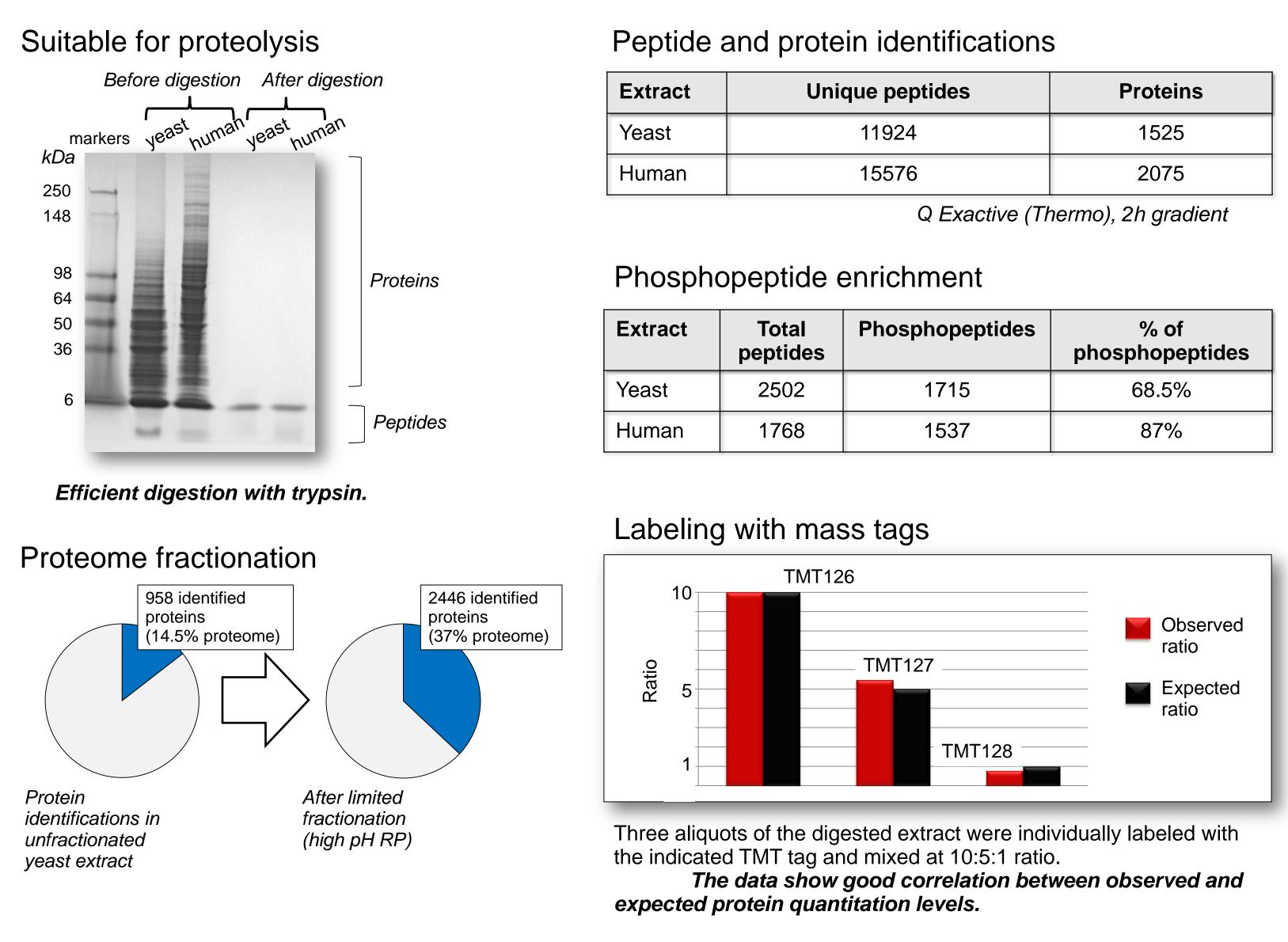
A comparison of alternative extract preparations

Extraction method	Protein degradation (% of nonspecific breaks)	Trypsin inhibition by
Urea	2%	Lack of inhibition (109) (Urea was diluted to 1
Protease inhibitor cocktail (Roche)	20%	Strong inhibition (55.9
GuCl	Not tested	Strong inhibition (44.4% miss concentr

Non-biological PTMs in Urea-extracted proteins

Extract	Carbamylated peptides	Deamidation spectra	Oxidation spectra
Yeast	0.12%	8%	2%
Human	0.15%	4.6%	0.7%

Carbamylation was prevented by reducing proteins at low temperature (37°C versus 55°C-65°C). The temperature did not affect reduction efficiency.


Urea allowed for extraction of proteins with minimal level of degradation or non-biological PTMs without adverse effects on downstream sample preparation steps.

by extraction agent

0% missed cleavages) 1M prior to digestion) .9% missed cleavages)

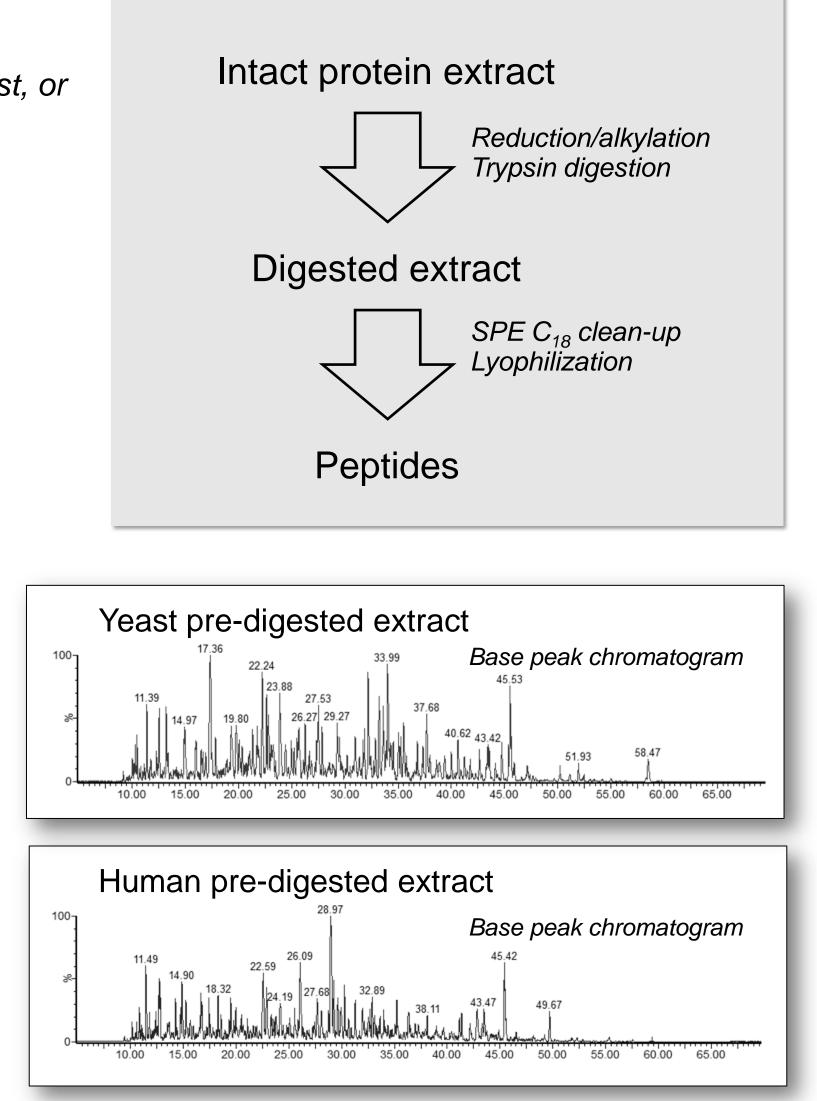
ssed cleavages at 0.5M GuCl tration)

3. Intact extracts for mass spec method development

4. Pre-digested extracts for instrument validation

Features

- ✓ Ready for analysis no need to reduce, alkylate, digest, or clean-up the sample
- ✓ Efficiently digested (less than 8% missed cleavages)
- ✓ Highly pure (SPE C_{18} clean-up)
- ✓ Lyophilized


Applications

- ✓ Instrument method optimization and validation
- ✓ Instrument performance monitoring
- ✓ Inter- and intralaboratory benchmarking

Instrument, laboratory and MS method	Pre- digested extract	Identified unique peptides	Identified proteins
Instrument #1,	yeast	12427	1567
Lab #1, method #1	human	18040	2370
Instrument #1,	yeast	27491	3096
Lab #2, method #2	human	46018	4664
Instrument #2,	yeast	11233	1220
Lab #3, method #3	human	10344	1588
Instrument #3,	yeast	14064	2703
Lab #4, method #4	human	19531	3885

tract	Unique peptides	Proteins
ast	11924	1525
man	15576	2075

tract	Total peptides	Phosphopeptides	% of phosphopeptides
ast	2502	1715	68.5%
man	1768	1537	87%

Protein and peptide composition reproducibility

Extract	Protein	overlap	Peptide overlap		
	Samples from different lots	Samples from the same lot	Samples from different lots	Samples from the same lot	
Yeast	90.5%	90%	79.3%	78.5%	
Human	79.6%	79.5%	57.9%	58.1%	

Quantitation via spectral counting

Yeast of Spe	extract					r <mark>act bato</mark> Counting	
Protein	#1	#2	#3	Protein	#1	#2	#:
YBR118W	358	375	368	ENOA	137	127	14
YGR192C	378	344	335	HS90B	155	157	15
YCR012W	369	336	304	ACTG	116	113	11
YAL005C	307	371	336	HS90A	134	130	12
YBR196C	153	153	146	PRKDC	126	129	11
YLR249W	150	129	128	TBB5	96	96	99
YDL145C	23	22	25	IF2P	18	17	17
YDR261C-D	31	30	28	ANXA2	21	23	23
YKL035W	31	26	32	DLDH	19	16	18
YOR375C	28	32	28	PDIA4	21	27	22
YDL195W	21	22	21	PPIB	20	17	16
YDR023W	26	24	23	BLVRB	20	21	23
YHR064C	29	29	28	AN32A	21	19	19

abundance

Ę	5.	Co	ond	:lu
	We			
	Ou rep	ir n Dro		hoo cib
	Th for	ma		act
	Th		Pre ins	e-dig trui
		pli	cati	ion

Protein Venn diagram

1633

(79.6% overlap)

Human extract lots

Batch #2

4. Extract reproducibility

Quantitation via SRM assay Courtesy by Dr Koomen Moffitt Cancer Center

Batch #1

203

Courtesy by Dr. Koomen, Momitt Cancer Center						
Protein	Peptide	Batch	Normalized abundance*			
		А	1.00			
ABL1_HUMAN	EISDIVOR	В	1.23			
		С	0.99			
		А	0.85			
SHC1_HUMAN	ALDFNTR	В	1.00			
		С	1.10			
		А	1.10			
STAT3_HUMAN	TLTDEELADWK	В	0.83			
		С	1.00			
		А	0.92			
	LSPPAGLFTSAR	В	1.09			
STAT5A_HUMAN		С	1.00			
		Α	1.00			
	YYTPVLAK	В	1.09			
		С	0.93			

*GAPDH normalized data

The extract lots show high reproducibility with respect to protein composition and

sions

ped MS ready total yeast and human protein

od allows for protein recovery with high ility and minimal level of protein degradation or ical PTMs

ts are provided in two ready-to-use alternative

protein extracts are designed for sample preparation d development and optimization gested extracts (peptides) serve to meet the need of ment validation and performance monitoring

ts show excellent performance in various is and provide conditions for comprehensive rument validation and method development