

DEVELOPMENT OF THE POWERQUANT™ SYSTEM FOR QUANTITATION OF HUMAN AUTOSOMAL AND MALE DNA WITH DETERMINATION OF DNA DEGRADATION

Margaret M. Ewing, Jonelle M. Thompson, Robert S. McLaren and Douglas R. Storts, Promega Corporation

Current qPCR based quantitation systems allow forensic DNA analysts to determine the optimal amount of human DNA to add to an STR amplification reaction and whether autosomal or Y-STRs are likely to be more informative based on the auto/Y quantitation ratio. The PowerQuant™ System meets these requirements using multi-copy targets for autosomal and Y quantitation, and assesses the degree of a DNA sample's degradation using a larger amplicon from a separate region of the same multi-copy autosomal quantitation target. These multi-copy targets allow sensitivity of detection down to 0.1pg/µL DNA while minimizing auto/Y ratio variation in male DNA samples. The design of the PowerQuant™ System master mix and internal PCR control (IPC) delivers sensitivity to PCR inhibitors comparable to newer STR amplification systems. The use of a larger amplicon to evaluate the degree of DNA degradation intrinsically increases the amplicon's susceptibility to inhibition. To mitigate the potential for inhibitors falsely flagging a sample as degraded, the IPC is designed to be similarly affected by inhibitors as the degradation amplicon. We present data demonstrating sensitivity, consistency of auto/Y ratio in male samples, resistance to inhibitors, ability to detect DNA degradation, species specificity, and male specificity at various ratios of male to female DNA.

Key Words: qPCR, quantitation, zero quant, PowerQuant™, Auto/Y, inhibitors, degraded DNA