NanoLuc[™] Luciferase: A Smaller, Brighter & More Versatile Luciferase Reporter

Brock F. Binkowski, Ph.D. Promega Corporation brock.binkowski@promega.com

June 2012

Outline

1. Bioluminescence in Life Science Research

- Reporter gene assays
- Applications using luciferase fusion proteins

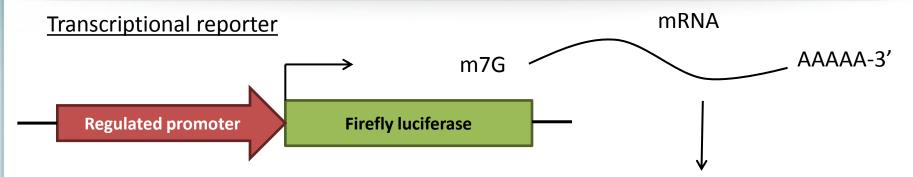
2. Introduction to NanoLuc™ Luciferase Assay System

- Enzyme/substrate development
- Key features
- Nano-Glo Luciferase Assay Reagent

3. NanoLuc in reporter gene assays

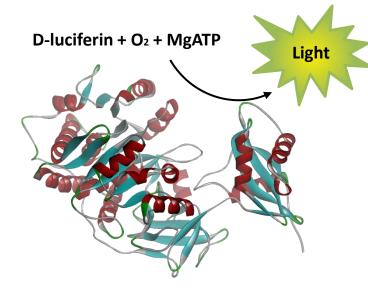
- Standard or secretion based formats
- NanoLuc genetic constructs
- Performance vs. firefly and Gaussia luciferase

5. NanoLuc as fusion partner


- Results of bioluminescent imaging
- NanoLuc as stability sensor
- NanoLuc in BRET

6. Commercial products for sale

- Plasmid DNA constructs
- Nano-Glo Luciferase Assay Substrate


Luciferase as reporter gene

Desirable characteristics:

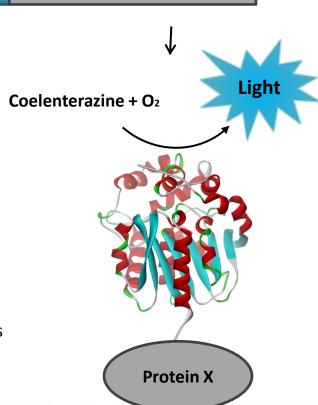
- Linear relationship between activity & concentration
 - Preferably over 7-8 logs of [luciferase]
- High sensitivity
 - Bright signal w/ low background
- Single, small subunit
- High structural stability
- Close coupling to the transcriptional response, when desired
- Standard or secretion based formats
- Ease-of-use
 - Single addition detection reagent
 - Glow-type luminescence signal

Model of firefly luciferase based on PDB file 1LCI

Luciferase as fusion partner

Constitutive promoter

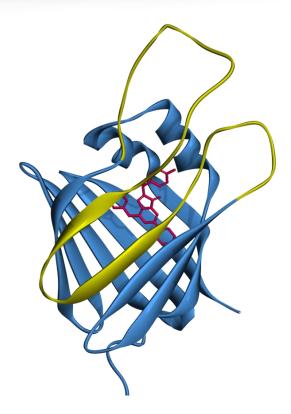
Renilla luciferase


Protein X

Applications:

- Bioluminescence resonance energy transfer (BRET)
- Protein stability sensors

Desirable characteristics:

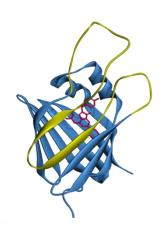

- Linear relationship between activity & concentration
- High sensitivity
 - Bright signal w/ low background
- Single, small subunit
- Emission spectrum compatible w/ fluorescent acceptors
- High structural stability
- Support high levels of activity in any cellular compartment
- No compartmental bias in the absence of targeting sequences
- Ease of use in signal detection
 - Single addition detection reagent
 - Glow-type luminescence signal

NanoLuc™ luciferase

NanoLuc™ (Nluc) is a 19.1 kDa, ATPindependent luciferase that utilizes a novel coelenterazine analog (furimazine) to produce high intensity, glow-type luminescence.

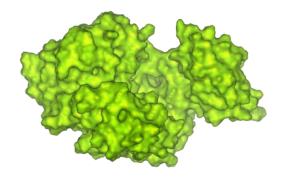
Nluc homology model

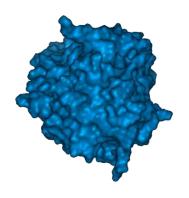
Development of NanoLuc™ & furimazine

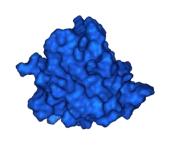

Developed by the Advanced Technology Group at Promega:

- Directed evolution on the 19 kDa subunit of Oplophorus gracilirostris luciferase
- Co-development of an optimized substrate
 - Screened numerous coelenterazine analogs for enhanced brightness & increased substrate stability

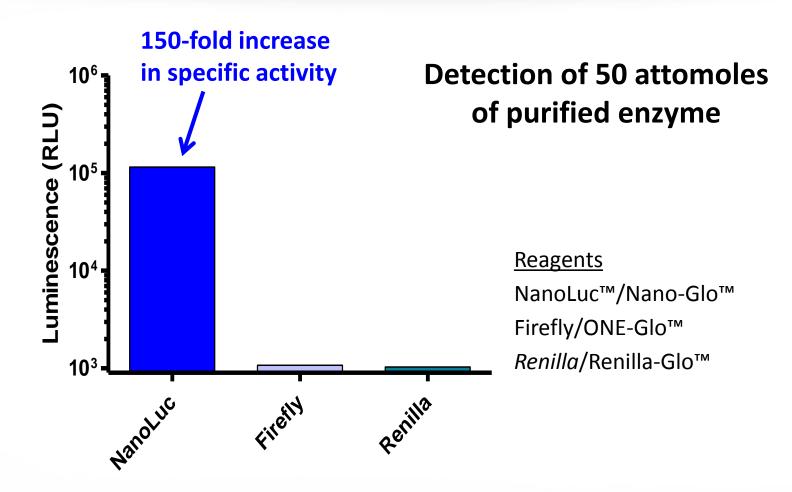
Results


- 2.5 million fold increase in luminescence
- Large increases in thermal stability
 - Half-life at 37 °C (HEK293 cell lysates): from < 5min to ~7 days
- Monomeric luciferase
 - Native enzyme is a heterotetramer


NanoLuc™ is very small


Firefly (Fluc)

Renilla (Rluc)


NanoLuc™ (Nluc)

	Amino acids	M.W.	Mol. Vol. Å ³
Nluc	171	19.1	14
Rluc	312	36.0	32
Fluc	550	60.6	44

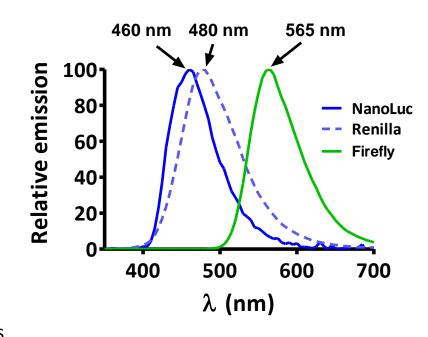
NanoLuc™ is very bright

NanoLuc™ has excellent physical properties

• Thermal stable enzyme

- Retains activity following 30 min incubation at 55 °C
 - Melting temps: Nluc, 58 °C; Fluc, 31 °C

Active over broad pH range

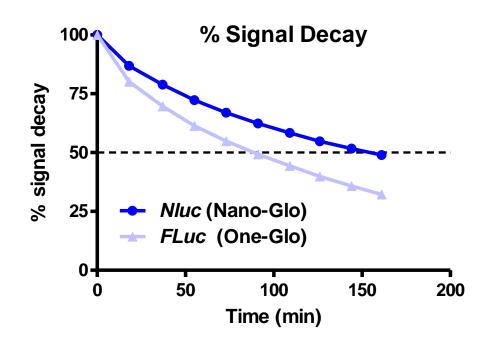

- Fully active between pH 7-9
- Retains significant activity at pH 5-7
- Fluc: sharp decrease in activity below pH = 8

Monomeric enzyme

- Facilitates use as transcriptional reporter or fusion partner
- No post-translational modifications detected in mammalian cells
- No disulfide bonds
 - Supports high levels of activity inside living cells

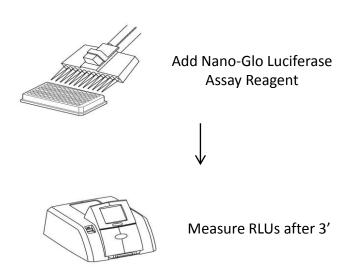
Uniform distribution in cells

 No apparent compartmental bias in the absence of targeting sequences

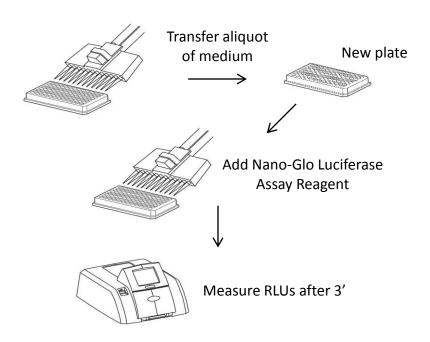


Nano-Glo™ Luciferase Assay Reagent

Nano-Glo Luciferase Assay Reagent:

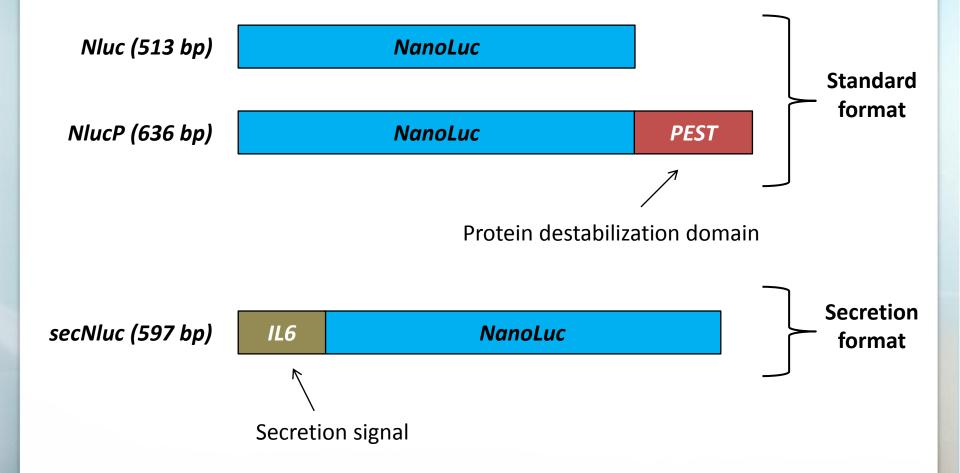

- Furimazine
 - Provides maximal brightness
- ATP independent reaction
- Glow kinetics
 - Half-life routinely >2 hours at room temperature
- Low autoluminescence background
 - Enhances assay sensitivity
- Stable reconstituted reagent:
 - ~10% decrease in activity over
 8 hrs at RT

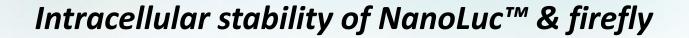
Reporter gene assays



Standard format

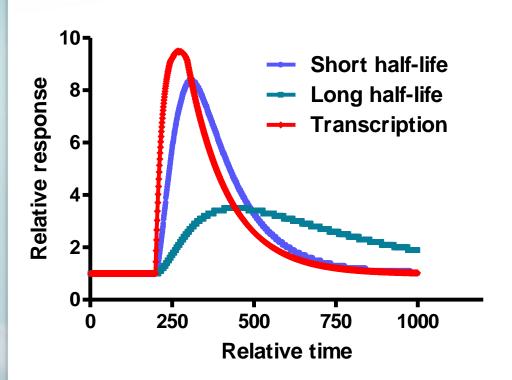
- 1) Cells lysed
- 2) Intracellular Nluc released


Secretion format



- 1) Nluc secreted from cells
- 2) Sample culture medium (no cell lysis)

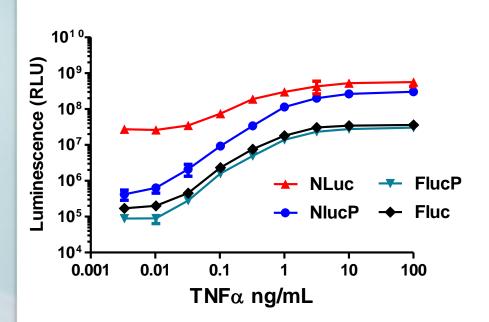
NanoLuc™ genetic constructs


Protein half-life following addition of cycloheximide

Cell line	FLuc	FLucP	NLuc	NLucP
HEK-293	>6 h	2.0 ± 0.4 h	>6 h	18 ± 11 min
HeLa	3.8 ± 1.3 h	1.4 ± 0.2 h	>6 h	20 ± 6 min
U2OS (n=1)	>6 h	2.8 h	>6 h	36 min

Relative protein stability in cells: NlucP < FlucP < Fluc < Nluc

Use of destabilized luciferase reporter proteins


Destabilized luciferase reporters

- Dimmer than unfused constructs
- Respond more quickly to changes in transcription
- Provide greater fold induction
- Basis behind Rapid Response[™]
 Reporters for firefly luciferase

Model assumptions: single component exponential decay; equal rates of synthesis; 10-fold difference in protein half-life.

Relative performance of reporter genes

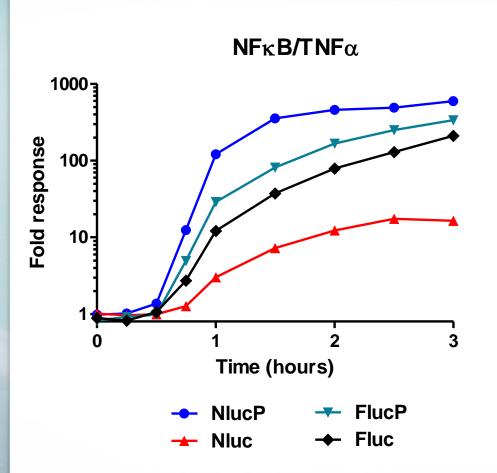
Experimental details: transient transfection of HEK293 cells with NF- κ B inducible constructs. rhTNF α treatment for 5 hours.

Brightness

Nluc > NlucP > Fluc > FlucP

(18 experiments)

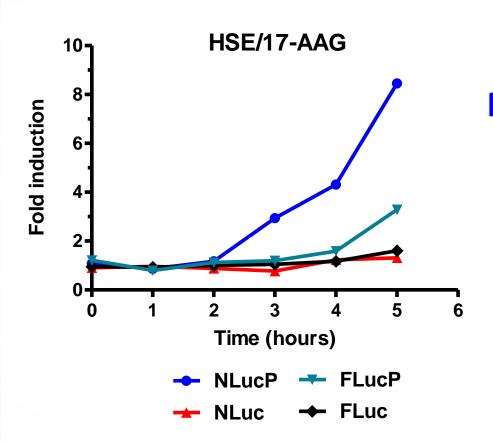
NLuc 13-236 fold brighter than Fluc (79 fold avg.)


NlucP 2-27 fold brighter than FLucP (10 fold avg.)

Nluc 10-78 fold brighter than NlucP (34 fold avg.)

→ Very similar pharmacology/EC50s

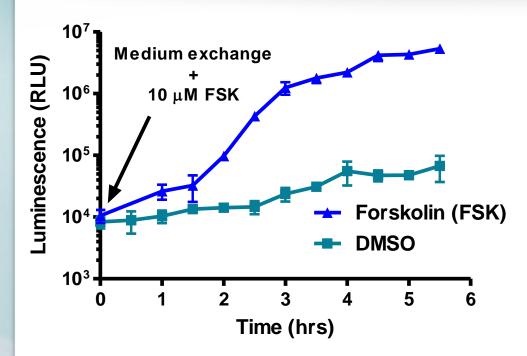
Relative response of reporter genes: ex. #1



Relative Response NlucP > FlucP > Fluc > Nluc

Experimental details: transient transfection of HEK293 cells with NF κ B inducible constructs; addition of 100 ng/ml rhTNF α at time zero.

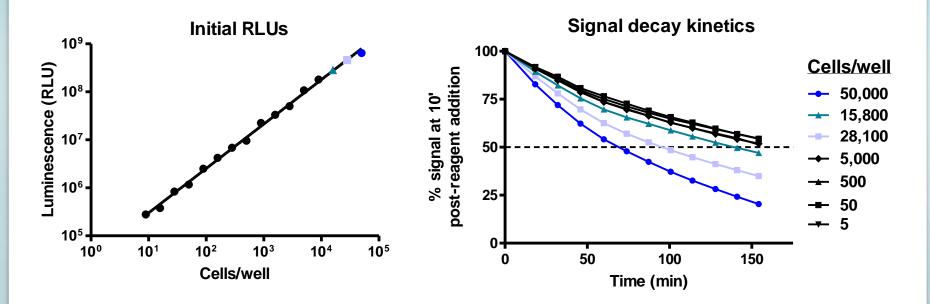
Relative response of reporter genes: ex. #2



Relative Response NlucP > FlucP > Fluc, Nluc

Experimental details: transient transfection of Hela cells w/ Hsf1 inducible constructs; addition of 500 nM 17-AAG at time zero.

Secretion based format using secNluc

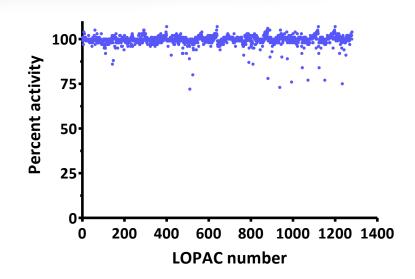


Experimental details: transient transfection of HEK293 cells with CREB inducible construct; addition of 10 μ M forskolin at time zero.

- Sample medium at multiple time points without cell lysis
 - Kinetic studies from the same set of wells
- Half-life of secNluc protein > 4 days at 37°C in medium
- Response dynamics similar to unfused Nluc
- Similar pharmacology vs. Nluc/NlucP

Decreased signal half-life at higher RLUs

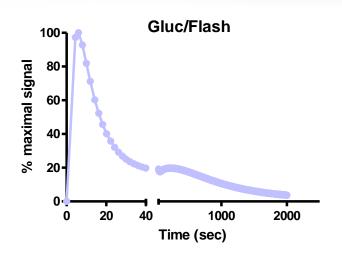
- Example experiment to control [Nluc] in the cell lysate
- At very high RLUs (>~5E8), signal half-life drops

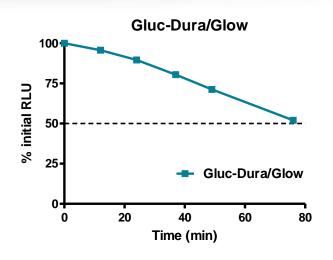

Experimental details: bulk transient transfection of HEK293 cells with pNL1.1.CMV [*Nluc*]; serial dilution with complete medium prior to addition of Nano-Glo Luciferase Assay Reagent.

Reduced false hit rate in HTS

LOPAC library (Sigma)

- 1280 compounds
- Small organic ligands w/ well documented pharmacological activities
- Used to screen for non-specific luciferase activity modulators

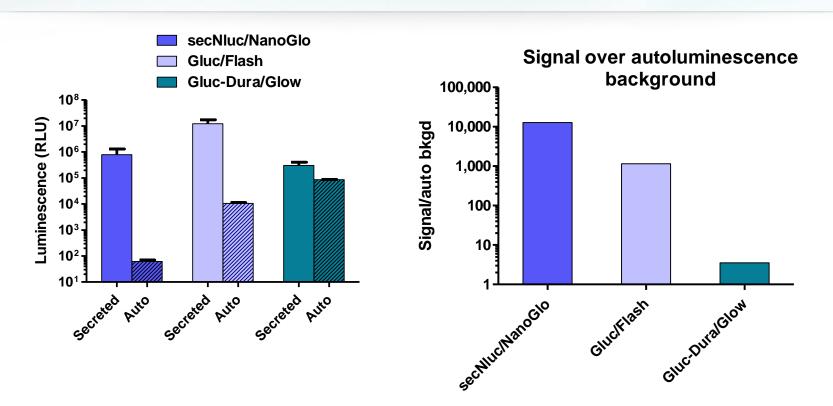



		Level of inhibition			
		≥ 10%	≥ 20%	≥ 30%	≥ 50%
% of library	NanoLuc	1.2%	0.5%	-	-
compounds	Firefly	1.9%	0.7%	0.5%	0.3%

Experimental details: LOPAC library members at 10 μ M final concentration; incubation with purified NanoLuc or firefly luciferase for 2 min.; Fluc detection using Bright-Glo.

Gaussia Luciferase (Gluc): flash or glow

- Gluc: 185 amino acids (19.9 kDa)
- Naturally secreted enzyme
- Coelenterazine substrate

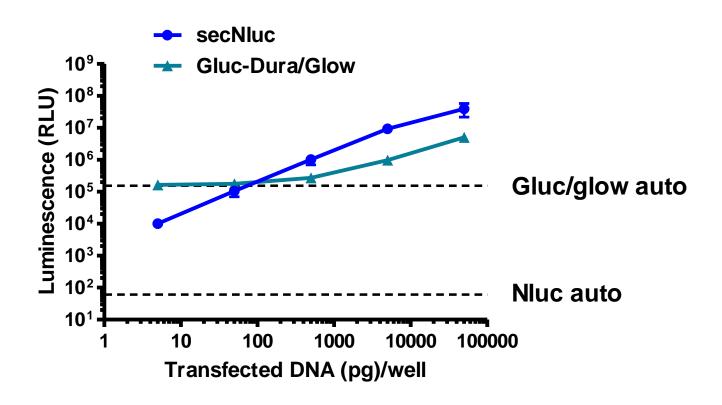

- Numerous disulfide bonds
- Flash assay requires injectors
 - Batch processing of plates is difficult

Gluc reagents from Pierce:
pCMV-Gaussia Luc (cat # 16147)
Gaussia Luciferase Flash Assay Kit (cat # 16159)

pCMV-Gaussia-Dura Luc (cat # 16191)
Gaussia Luciferase Glow Assay Kit (cat # 16161)

OPromega

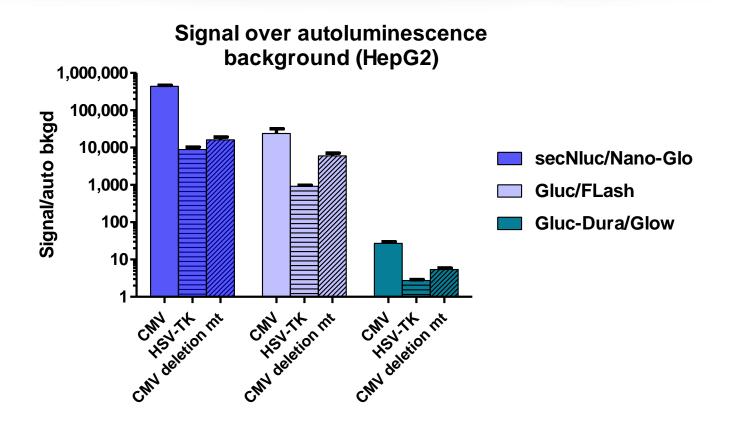
Gluc kits: bright, but high autoluminescence background



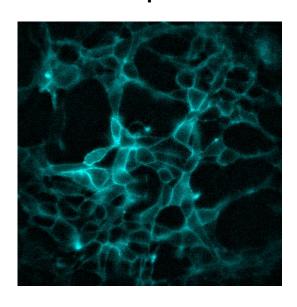
Gluc kits: high background limits sensitivity & dynamic range

Experimental details: reverse transfection of HepG2 cells (DMEM +10% FBS) w/CMV promoter constructs; removal of aliquots after 22 hrs; n = 12 per treatment.

Gluc glow: high background reduces sensitivity



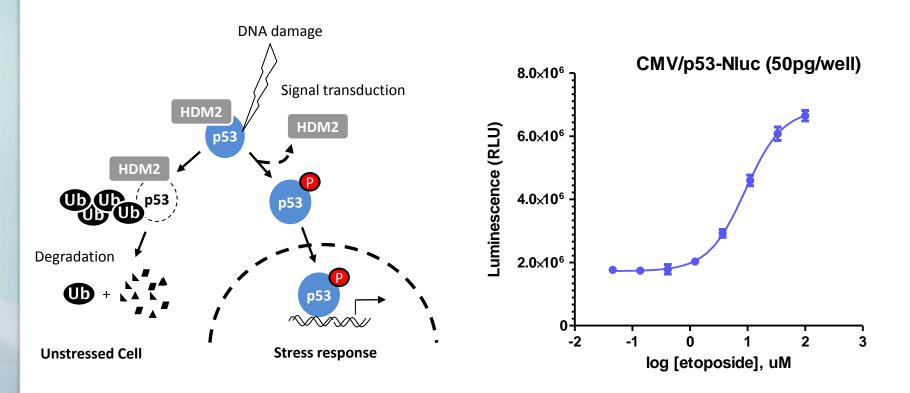
Experimental details: transfection of HepG2 cells with CMV promoter constructs for ~24 hrs (carrier DNA used to keep total [DNA] constant per well); washed & replaced w/ DMEM + 10% FBS; incubation for 3 hrs prior to aliquot removal to measure RLUs.



Experimental details: reverse transfection of HepG2 cells (DMEM +10% FBS) with constitutive promoter constructs; removal of aliquots after 24 hrs; n = 8 per treatment.

NanoLuc™ as fusion partner

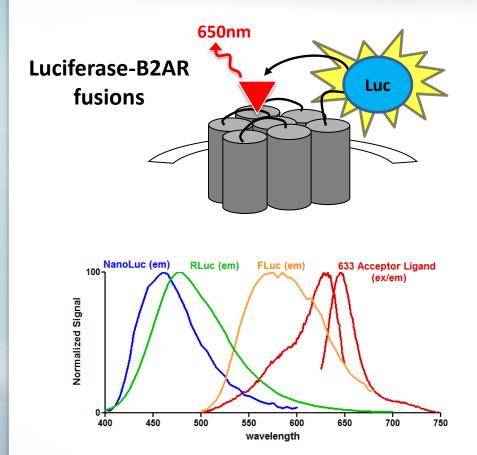
Bioluminescence of Nluc-B2AR fusion protein

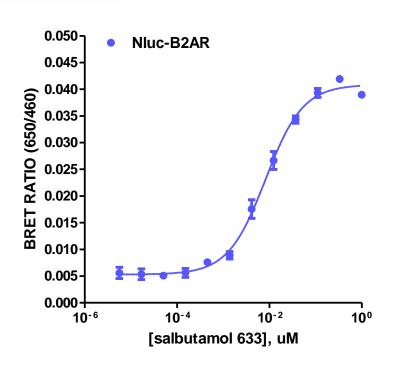

Results of bioluminescence imaging

- Brightness allows short exposure times (1-5 seconds)
- Diffuse signal throughout the cell in the absence of a targeting sequence
- Multiple Nluc fusions showed proper static or dynamic localization patterns
 - No apparent influence on target protein function
- Nluc supports high levels of activity in multiple cellular compartments
 - In contrast to other small luciferase enzymes

Experimental details: stable expression of IL6-Nluc-B2AR in HEK293 cells; image obtained using Olympus LV200 Bioluminescence Imager and a single addition of 20 μ M furimazine; 5 second exposure (EMCCD image intensification turned off); CO2 independent medium (no serum).

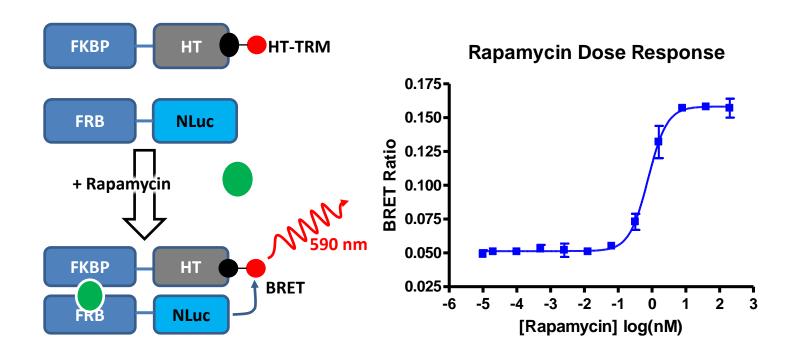
NanoLuc™ fusions as stability sensors





Experimental details: reverse transfection of HEK293 cells for 24 hrs; treatment with etoposide for 6 hrs followed by addition of Nano-Glo Luciferase Assay Reagent; measurement on GloMax Multi+.

BRET ligand binding assay using NanoLuc™



No detectable BRET for Fluc or Rluc

Experimental details: reverse transfection of HEK293 cells w/ IL6-luciferase-B2AR fusions; equilibrate cells with salbutamol-633 tracer; add luciferase substrates; measure BRET using monochromator (Fluc, 650/570; Rluc, 650/480; Nluc, 650/460).

NanoLuc™ & intracellular BRET

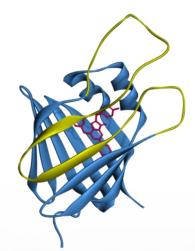
Experimental details: reverse transfection of HEK293 cells w/ FKBP-HaloTag v7 & FRB-Nluc constructs; pre-incubation w/ HaloTag TMR ligand; rapamycin added & luminescence measured after addition of 20 μ M furimazine to living cells; monochromator measurements of BRET ratio = 590/460.

Summary: NanoLuc™ Luciferase as a Reporter Gene

<u>Nluc</u>

- Provides maximal sensitivity in detecting low levels of expression
 - ~80-fold brighter than firefly in cell based assays
- Reduced false hit rate in HTS (likely true for NlucP & secNluc as well)

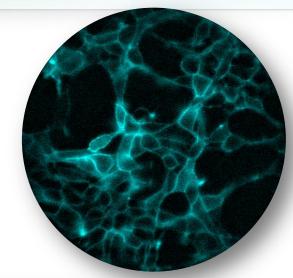
NlucP

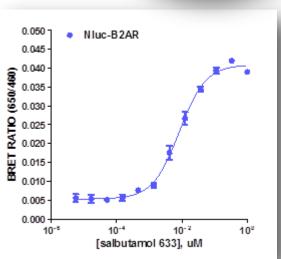

- Best performing Rapid Response[™] reporter
 - 10-fold brighter and more responsive than FlucP
 - ~20 min half-life in mammalian cells
- Reporter of choice for a close coupling to the transcriptional response
- Reporter of choice when the transcriptional response is limited (low S/B)

<u>secNluc</u>

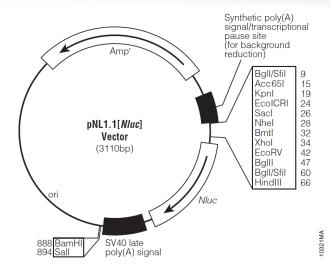
- Stable for several days in cell culture medium
- Time course studies on the same set of wells (no cell lysis)

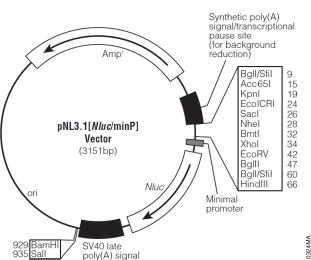
Nano-Glo

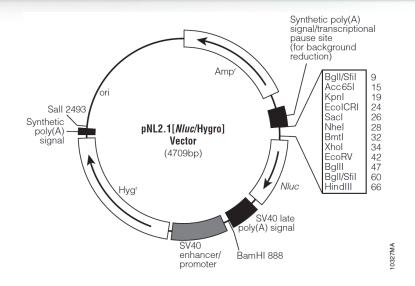

- Glow-type luminescence signal with ~2 hr half-life of signal decay
- Very low autoluminescence background



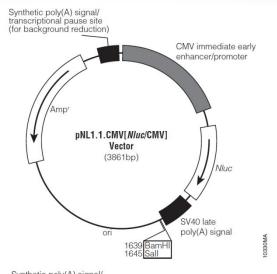
Summary: NanoLuc™ Luciferase as a fusion partner

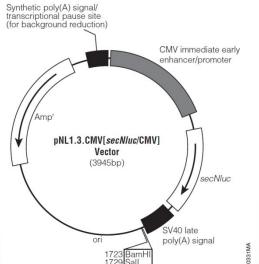

- Supports high levels of activity inside living cells
 - Provides maximal sensitivity in detecting low levels of expression
- Small size (19 kDa) is ideal (minimal impact on fusion partner function)
- No compartmental bias in the absence of a targeting sequence
- Emission spectrum compatible with BRET

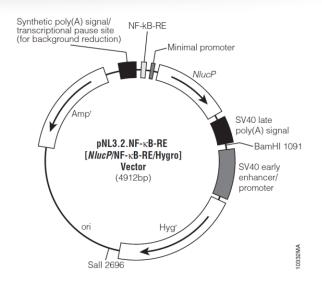




NanoLuc vectors for cloning






- Nluc, NlucP & secNluc versions for each
 - pNLX.1, pNLX.2 & pNLX.3, respectively
- All *Nluc* vectors possess:
 - Codon optimized ORF for expression in mammalian cells
 - Minimization of consensus transcription factor binding sites throughout the plasmid
 - A parent pGL4 construct (Nluc replaces Fluc)

NanoLuc control and response element vectors

pNL1.1.CMV [Nluc/CMV]

• Constitutive expression

pNL1.3.CMV [secNluc/CMV]

Constitutive expression & secretion

pNL.3.2.NF-κB-RE [NlucP/NF-κB-RE/Hygro]

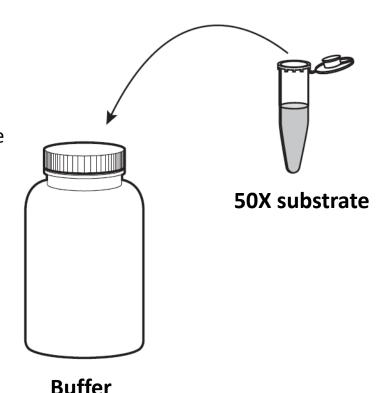
Inducible expression via NFκB

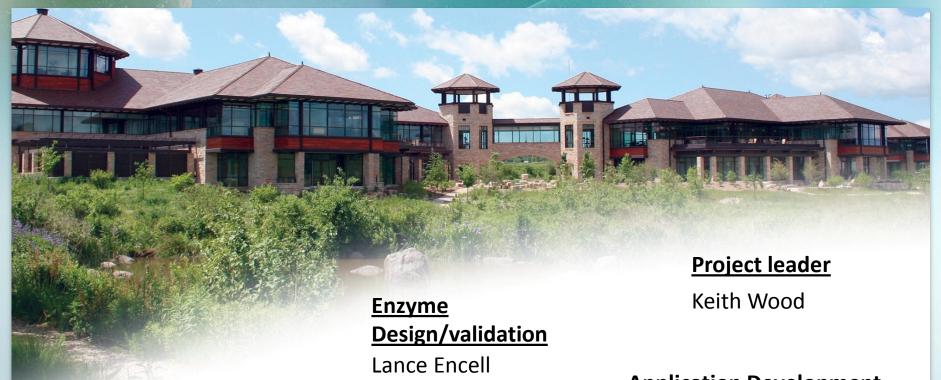
Nano-Glo Luciferase Assay Reagent

Cat # N1110: 10ml (100 assays)

- 200µl Nano-Glo™ Luciferase Assay Substrate
- 10ml Nano-Glo™ Luciferase Assay Buffer

Cat # N1130 10x10ml (1,000 assays)


- 10x200µl Nano-Glo™ Luciferase Assay Substrate
- 10x10ml Nano-Glo™ Luciferase Assay Buffer


Cat.# N1120 100ml (1,000 assays)

- 2x1ml Nano-Glo™ Luciferase Assay Substrate
- 100ml Nano-Glo™ Luciferase Assay Buffer

Cat.# N1150 10x100ml (10,000 assays)

- 5x4ml Nano-Glo™ Luciferase Assay Substrate
- 10x100ml Nano-Glo™ Luciferase Assay Buffer

Substrate Design

Poncho Meisenheimer

James Unch

Ruslan Arbit

Hui Wang

Dieter Klaubert

Monika Wood

Mary Hall

Kris Zimmerman

Paul Otto

Hélène Benink

Gedi Vidugiris

Mike Slater

Application Development

Braeden Butler

Mike Valley

Matt Robers

Thomas Machleidt

Chris Eggers

Frank Fan