

Technical Manual

CheckMate™/Flexi® Vector Mammalian Two-Hybrid System

INSTRUCTIONS FOR USE OF PRODUCT C9360.

www.promega.com

Revised 4/09

Part# TM283

CheckMate[™]/Flexi[®] Vector Mammalian Two-Hybrid System

All technical literature is available on the Internet at: www.promega.com/tbs/ Please visit the web site to verify that you are using the most current version of this Technical Manual. Please contact Promega Technical Services if you have questions on use of this system. E-mail: techserv@promega.com

1.	Description	1
2.	Product Components and Storage Conditions	4
3.	General Considerations A. pFN10A (ACT) Flexi® Vector B. pFN11A (BIND) Flexi® Vector C. pGL4.31[<i>luc2P/GAL4</i> UAS/Hygro] Vector	6 8
4.	Protocols A. Cloning into the Flexi® Vectors B. Vector Purification, Transfection and Experimental Design	12
5.	Troubleshooting	15
6.	References	16
7.	Related Products	18
8.	Appendix	19 21 23
	D. Control Vector Maps	25

1. Description

Protein interactions are an integral aspect of functional proteomic studies, and the CheckMateTM/Flexi® Vector Mammalian Two-Hybrid System^(a-g) provides a means to confirm, validate and study suspected interactions between two proteins or domains. This system can also be used to generate stable cell lines for cell-based assays to identify modulators of a specific protein:protein interaction. The original CheckMateTM Mammalian Two-Hybrid System (Cat.# E2440) has been used to study proteins involved in processes including transcriptional regulation (1,2), signal transduction (3,4), developmental biology (5), pathology (6) and viral protein interactions and functions (7,8).

Developed particularly for mammalian proteins of interest, the CheckMateTM/ Flexi® Vector System can allow protein expression and post-translational modifications in an environment mimicking the native cell milieu. The CheckMateTM/Flexi® Vector System is patterned on the yeast two-hybrid system (9–12) with one protein of interest ("X") fused to a DNA-binding domain and the other protein ("Y") fused to a transcriptional activation domain. Association of both domains, driven by the interaction of proteins "X" and "Y", results in binding to the promoter region and transcriptional activation of a firefly luciferase reporter gene (Figure 1). Assay of firefly luciferase activity is sensitive, rapid and easy.

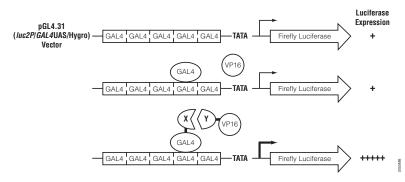


Figure 1. Schematic representation of the CheckMate[™]/Flexi[®] Vector Mammalian Two-Hybrid System. The pGL4.31[*luc2P*/GAL4UAS/Hygro] Vector contains five GAL4 binding sites upstream of a minimal TATA box, which in turn is upstream of the firefly luciferase gene. In negative controls, the background level of luciferase is measured in the presence of GAL4 DNA-binding domain (from pBIND) and VP16 activation domain (from pACT). Interaction between the two test proteins, expressed as GAL4-X and VP16-Y fusion constructs, results in an increase in luciferase expression over the negative controls.

The CheckMate[™]/Flexi[®] Vector System relies upon three plasmids that are cotransfected into mammalian cells. The pFN10A (ACT) Flexi[®] Vector contains a herpes simplex virus VP16 transcriptional activation domain upstream of the cloning site, and the pFN11A (BIND) Flexi[®] Vector contains the yeast GAL4 DNA-binding domain upstream of the cloning site. The pFN11A (BIND) Flexi[®] Vector also expresses the *Renilla reniformis* luciferase under the control of the SV40 promoter, allowing normalization for differences in transfection efficiency. The third vector, pGL4.31[*luc2P*/GAL4UAS/Hygro], contains five GAL4 binding sites upstream of a minimal TATA box, which is upstream of a firefly luciferase gene that acts as a reporter for interactions between proteins "X" and "Y".

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com Part# TM283 Revised 4/09. Page 2 The CheckMate[™]/Flexi[®] Vector System differs from the original CheckMate[™] System in the properties of the three supplied plasmids. The vectors, pFN10A (ACT) and pFN11A (BIND), are compatible with the Flexi® Vector System, which allows directional cloning and a rapid, efficient and high-fidelity transfer of protein-coding sequences between a variety of other Flexi® Vectors. Both of the Flexi[®] Vectors supplied in the CheckMate[™]/Flexi[®] Vector System incorporate two rare-cutting restriction enzyme sites, SgfI and PmeI, flanking the protein-coding sequences, and also contain the lethal barnase gene for positive selection during the cloning step. For additional information on Flexi® Vectors, see the Flexi® Vector Systems Technical Manual #TM254 available at: www.promega.com/tbs. The reporter gene in the CheckMate[™]/Flexi[®] Vector System is supplied on the pGL4.31[luc2P/GAL4UAS/Hygro] Vector, which contains a firefly luciferase gene (*luc2P*) that has been engineered for rapid response characteristics and a gene for hygromycin resistance to allow generation and maintenance of stably transformed cells. To learn more about the pGL4 series of vectors, see the pGL4 Luciferase Reporter Vectors Technical Manual #TM259 available at: www.promega.com/tbs/

Positive control vectors provided in the CheckMateTM/Flexi[®] Vector System encode and express two proteins known to interact in vivo (13–16). The pACT-MyoD and pBIND-Id Control Vectors encode VP16-MyoD and GAL4-Id fusion proteins, respectively. The provided vectors pACT and pBIND, which lack fusion proteins, may be used as negative controls.

D The pFN10A (ACT) Flexi[®] Vector and pFN11A (BIND) Flexi[®] Vector **should not** be used directly as negative control vectors because they both contain the barnase gene, which is toxic when expressed in cells.

2. Product Components and Storage Conditions

Product		Cat. #	
CheckMate™/Flexi® Vector Mammalian Two-Hybrid System		C9360	
Includes	6:		
• • • •	5µg 20µg 20µg 20µg 20µg	pFN10A (ACT) Flexi® Vector pFN11A (BIND) Flexi® Vector pGL4.31[<i>luc2P/GAL4</i> UAS/Hygro] Vector pBIND Vector pACT Vector pBIND-Id Control Vector pACT-MyoD Control Vector	
Product	;		Cat. #
CheckM	late™ Po	sitive Control Vectors	C9370
Includes	6:		
•	10	pBIND-Id Control Vector pACT-MyoD Control Vector	
Product			Cat. #
CheckM	late™ Ne	egative Control Vectors	C9380
Includes	6:		
•		pBIND Vector pACT Vector	

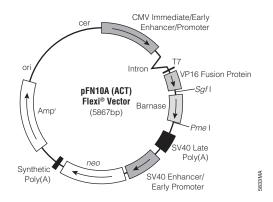
Items Available Separately

Product	Size	Cat. #
pFN10A (ACT) Flexi® Vector	20µg	C9331
pFN11A (BIND) Flexi® Vector	20µg	C9341
pGL4.31[luc2P/GAL4UAS/Hygro] Vector	20µg	C9351

Storage Conditions: Store the vectors at -20°C.

3. General Considerations

The protein-coding regions of interest should be cloned into the pFN10A (ACT) and pFN11A (BIND) Flexi® Vectors. The SgfI and PmeI restriction sites in these vectors are designed for in-frame protein fusions with the VP16 activation domain and GAL4 DNA-binding domain, respectively. The protein-coding region can be obtained by transfer from other Flexi® Vectors or by capture of amplification products generated with SgfI and PmeI primers. For a complete description of the Flexi® Vector Systems, please refer to Technical Manual #TM254.


Certain protein-coding regions appear to perform differently depending upon whether they are fused to the VP16 activation domain or the GAL4 DNAbinding domain (13), and the interaction between the pairs may be vectordependent. Because of this phenomenon, we advise cloning the protein-coding regions of interest into both the pFN10A (ACT) and pFN11A (BIND) Flexi® Vectors and testing for possible fusion protein interactions.

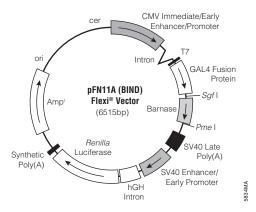
Transcriptional activation domains for a protein of interest can be tested by fusion with the pFN11A (BIND) Flexi® Vector. Co-transfection of this construct together with the reporter pGL4.31[*luc2P/GAL4*UAS/Hygro] Vector would be expected to give higher levels of luciferase activity compared to co-transfection of the reporter vector with the pBIND Vector alone, or the pFN11A (BIND) Flexi® Vector with a protein-coding region that is not a transcriptional activator.

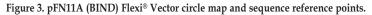
3.A. pFN10A (ACT) Flexi® Vector

The pFN10A (ACT) Flexi® Vector contains several specialized features. The vector is designed to express a functional fusion protein comprising the herpes simplex virus VP16 activation domain (amino acids 411-456), nuclear localization sequences, a linker segment and an in-frame protein-coding sequence flanked by SgfI and PmeI sites at the 5' and 3' ends, respectively (Figure 2). Fusion protein expression is under control of the human cytomegalovirus (CMV) immediate early promoter. The protein-coding sequence can be captured directly into the ampicillin-resistant pFN10A (ACT) Flexi® Vector from an amplification reaction or transferred from another Flexi® Vector, preferably encoding kanamycin resistance, via the compatible SgfI/ PmeI sites. The transcribed RNA sequence for the fusion protein contains a chimeric intron 5' of the protein coding region (17,18) and polyadenylation region 3' of the coding region (19). A T7 RNA polymerase promoter embedded upsteam of the VP16 activation domain allows the construct to be transcribed and translated in vitro [e.g., using the TNT® T7 Quick Coupled Transcription/Translation System (Cat. #L1170)]. The pFN10A (ACT) Flexi® Vector also contains the neomycin phosphotransferase gene driven by the SV40 early promoter. Neomycin phosphotransferase confers resistance to the antibiotic G418 (Geneticin®) to transfected cells (20). Once the protein coding sequence of interest is cloned into the pFN10A (ACT) Flexi Vector, the resulting plasmid can be propagated in *E. coli* under ampicillin selection.

Figure 2. pFN10A (ACT) Flexi® Vector circle map and sequence reference points.

pFN10A (ACT) Flexi® Vector Sequence Reference Points:


CMV immediate/early enhancer/promoter	1-742
Chimeric intron	857-989
T7 RNA polymerase promoter (-17 to +3)	1033-1052
VP16 fusion protein	1083-1292
IgA linker	1299-1340
SgfI site	1332-1339
Barnase coding region	1363-1698
PmeI site	1700-1706
SV40 late polyadenylation signal	1859-2080
SV40 enhancer/early promoter	2179-2597
Neomycin phosphotransferase coding region	2642-3436
Synthetic polyadenylation signal	3500-3548
β-lactamase (Amp ^r) coding region	3809-4669
ColE1-derived plasmid origin of replication	4824-4860
cer region (site for E. coli XerCD recombinase)	5531-5816


Note: The IgA linker encodes the polypeptide AIPSTPPTPSPAIA.

3.B. pFN11A (BIND) Flexi® Vector

The pFN11A (BIND) Flexi® Vector is designed to functionally express a fusion protein comprised of a DNA-binding domain of the yeast GAL4 gene (amino acids 1–147), a linker segment and an in-frame protein-coding sequence flanked by SgfI and PmeI sites at the 5' and 3' ends, respectively, under the control of the human cytomegalovirus (CMV) immediate early promoter (Figure 3). As with the pFN10A (ACT) Flexi® Vector, this ampicillin-resistant vector can be used as an acceptor vector for protein-coding sequences obtained directly by PCR amplification or transferred from another Flexi® Vector, preferably encoding kanamycin resistance, via the compatible SgfI/PmeI sites. In the pFN11A (BIND) Flexi[®] Vector, the *Renilla* luciferase gene is preceded by the SV40 early promoter and a growth hormone intron (hGH) for high expression levels (17,18). The Renilla luciferase gene may be used to normalize for transfection differences between samples within an experiment. A T7 RNA polymerase promoter is included upstream of the GAL4 DNA binding domain and allows the construct to be transcribed and translated in vitro using the TNT® T7 Quick Coupled Transcription/Translation System (Cat. #L1170).

pFN11A (BIND) Flexi® Vector Sequence Reference Points:

CMV immediate/early enhancer/promoter	1-742
Chimeric intron	857-989
T7 RNA polymerase promoter (-17 to +3)	1033-1052
GAL4 fusion protein	1083-1520
IgA linker	1521-1553
SgfI site	1554-1561
Barnase coding region	1585-1920
<i>Pme</i> I site	1922-1929
SV40 late polyadenylation signal	2081-2302
SV40 enhancer/early promoter	2401-2819
hGH intron	2871-3130
Renilla luciferase coding region	3155-4090
Synthetic polyadenylation signal	4148-4194
β-lactamase (Amp ^r) coding region	4457-5317
ColE1-derived plasmid origin of replication	5472-5508
cer region (site for <i>E. coli</i> XerCD recombinase)	6179–6464

Note: The IgA linker encodes the polypeptide AIPSTPPTPSPAIA.

3.C. pGL4.31[luc2P/GAL4UAS/Hygro] Vector

The pGL4.31[*luc2P/GAL4*UAS/Hygro] Vector is designed for transcriptional activation of the firefly luciferase reporter gene by association of the GAL4 DNA-binding and VP16 activation domains bound upstream of the luciferase gene. This reporter vector contains five consensus binding sequences, or Upstream Activating Sequences (UAS), for the GAL4 DNA-binding domain (*GAL4*UAS) upstream of a minimal adenoviral promoter. The *luc2P* reporter gene is a synthetic firefly luciferase sequence engineered for increased mammalian expression by optimizing the codons used and removing the consensus sequences for transcription factor binding sites. In addition, the *luc2P* gene incorporates a protein degradation sequence, PEST, from the C-terminal region of mouse ornithine decarboxylase (21) to give a destabilized reporter protein with a faster response that may be better suited to monitor rapid processes. The pGL4.31 Vector codes for hygromycin resistance, which allows long-term selection of stably transfected cells (22), and ampicillin resistance for propagation in *E. coli*.

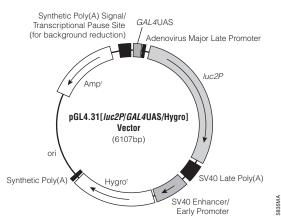


Figure 4. pGL4.31[*luc2P/GAL4*UAS/Hygro] Vector circle map and sequence reference points.

pGL4.31[luc2P/GAL4UAS/Hygro] Vector Sequence Reference Points:

GAL4UAS binding sites	31-133
Adenovirus major late promoter	145-185
luc2P firefly luciferase reporter	238-2013
SV40 late polyadenylation signal	2053-2274
SV40 enhancer/early promoter	2322-2740
Synthetic hygromycin resistance (Hygro ^r) coding region	2765-3802
Synthetic polyadenylation signal	3826-3874
ColE1-derived plasmid origin of replication	4198-4234
Synthetic β-lactamase (Amp ^r) coding region	4989-5849
Synthetic poly(A) signal/transcriptional pause site	5954-6107

4. Protocols

4.A. Cloning into the Flexi® Vectors

To clone your coding regions of interest, you can either transfer the region from a Flexi® Vector or capture a PCR amplimer. For detailed protocols on protein-coding region amplification or transfer, please refer to the *Flexi® Vector Systems Technical Manual* #TM254.

Transfer from a Flexi® Vector

 Clone the coding regions of interest into a Flexi® Vector using the Flexi® System, Entry/Transfer (Cat.# C8640).

Protein-coding regions can be cloned into Flexi® Vectors, and these inserts can be easily transferred to other Flexi® Vectors following digestion with SgfI and PmeI. Insert orientation and reading frame are maintained, eliminating the need to resequence inserts after each transfer. Vectors that encode no tags or N-terminal fusion tags can serve as acceptors and donors of protein-coding regions. Vectors that encode a C-terminal fusion tag can only serve as acceptors.

 Transfer the coding regions into the pFN10A (ACT) and pFN11A (BIND) Flexi® Vectors as described in Section 5 of the Flexi® Vector Systems Technical Manual #TM254.

The pFN10A (ACT) and pFN11A (BIND) Flexi® Vectors can serve as acceptors of protein-coding regions from other native-expressing or N-terminal fusion Flexi® Vectors, preferably vectors that encode kanamycin resistance. Since the pFN10A (ACT) and pFN11A (BIND) Flexi® Vectors both contain ampicillin resistance, transfer from a kanamycin-type Flexi® Vector allows selection against the donor plasmid. pFN10A (ACT) and pFN11A (BIND) Flexi® Vectors containing protein-coding inserts can serve as donors to other Flexi® Vectors. Transfer of protein-coding regions between donor and acceptor Flexi® Vectors is accomplished by a 15-30 minute restriction digestion reaction followed by heat-inactivation, a 1-hour ligation reaction and bacterial transformation.

PCR Amplify and Capture Insert

1. Clone the protein-coding regions of interest into the pFN10A (ACT) and pFN11A (BIND) Flexi® Vectors using PCR amplimers.

To facilitate cloning, PCR primers used to amplify the protein-coding region must append an SgfI site to the amino-terminus and a PmeI site to the carboxy-terminus of the product. Transfer of the protein-coding regions into N-terminal fusion vectors results in translational readthrough of the SgfI site, which encodes the peptide sequence Ala-Ile-Ala. The PmeI site is placed at the carboxy terminus, appending a single valine residue to the last amino acid of the protein-coding region. The valine codon, GTT, is immediately followed by an ochre stop codon, TAA. Primer design guidelines are provided in Technical Manual #TM254 and at: www.promega.com/techserv/tools/flexivector/

4.B. Vector Purification, Transfection and Experimental Design

1. Purify the CheckMateTM/Flexi[®] Vector fusion constructs.

Following successful cloning or transfer of protein-coding regions into the Flexi® Vectors, the plasmids should be purified by methods that provide DNA that is relatively free of protein, RNA and chemical contamination. For a listing of various plasmid purification systems available from Promega, such as the PureYield[™] Plasmid Midiprep System (Cat.# A2492), visit the DNA Purification chapter of the online *Protocol and Applications Guide* at: **www.promega.com/paguide/**. The pGL4.31[*luc2P/GAL4*UAS/ Hygro] Vector is provided ready for transfection.

 Transfect the purified CheckMate[™]/Flexi[®] Vector constructs into your cell line.

Transfection optimization with your cell type of interest is important to successfully assay protein:protein interactions. The optimization process is easier using a reporter gene and assay system, such as the firefly luciferase reporter pGL4.13 [*luc2/SV40*] Vector (Cat.# E6681) and the Bright-GloTM Luciferase Assay System (Cat.# E2610). Standard transfection methods to use include cationic lipid [e.g., TransFastTM Transfection Reagent (Cat. #E2431)], calcium phosphate [e.g., ProFection® Mammalian Transfection System – Calcium Phosphate (Cat.# E1200)], DEAE-dextran [e.g., ProFection® Mammalian Transfection System – DEAE-Dextran (Cat.# E1210)], electroporation and nucleofection protocols.

3. Measure the bioluminescent signal from the mammalian two-hybrid experiment.

Identification of protein:protein interactions with the CheckMateTM/Flexi[®] Vector System requires co-transfection of three plasmids: the pFN10A (ACT) and pFN11A (BIND) Flexi[®] Vectors containing the protein-coding regions of interest and the pGL4.31[*luc2P/GAL4*UAS/Hygro] Vector. Determine the optimal amount of plasmid DNA needed for transfection with your system. This can be done using a control reporter vector. Using this optimized quantity as a starting point, transfect similar amounts of each plasmid in the co-transfection mixture with the total equal to the optimal amount of plasmid DNA.

Do not transfect pFN10A (ACT) or pFN11A (BIND) Flexi® Vectors directly for baseline or negative control comparisons. These vectors contain the barnase gene, which is toxic in mammalian cells. Instead, use the pACT and pBIND Vectors as negative controls. These vectors contain identical transcriptional activation and DNA-binding domains, respectively, to the corresponding Flexi® Vectors. Alternatively, protein-coding regions known not to interact can be cloned into the pFN10A (ACT) and pFN11A (BIND) Flexi® Vectors and used as negative controls. The pACT-MyoD and pBIND-Id Control vectors can be used together as positive controls when cotransfected with the reporter vector. The MyoD and Id proteins are known to interact and provide a positive readout signal in many cell types tested (23), and can be used to troubleshoot the CheckMateTM/Flexi® Vector System.

4.B. Vector Purification, Transfection and Experimental Design (continued)

Table 1 presents recommended combinations of vectors to properly control experiments using the CheckMateTM/Flexi[®] Vector System. "X" and "Y" represent protein-coding regions to test for protein:protein interactions.

Sample	ACT Vector	BIND Vector	pGL4.31 (<i>luc2P/GAL4</i> UAS/Hygro) Vector
1	pFN10A (ACT)-Y	pFN11A (BIND)-X	+
2	pACT Vector	pFN11A (BIND)-X	+
3	pFN10A (ACT)-Y	pBIND Vector	+
4	pACT Vector	pBIND Vector	+
5	pACT-MyoD Control	pBIND-Id Control	+

Table 1. Experimental Design for Testing Protein: Protein Interactions.

Sample 1 is used to test for protein interactions between the X and Y proteincoding regions.

Sample 2 is used to test for the background level of reporter activity when one of the protein-coding regions is fused to the GAL4 DNA-binding domain. This also tests for transcriptional activation domain activity of protein **X** when fused to the GAL4 DNA-binding domain.

Sample 3 is used to test for the background levels of reporter activity when one of the protein-coding regions is fused to the activation domain.

Sample 4 generally provides the lowest level of background activity of luciferase activity from the reporter plasmid.

Sample 5 provides a positive control with interacting proteins fused to the activation and GAL4 DNA-binding domains.

Notes:

- 1. Samples 2 or 3 may provide the appropriate luciferase background level to use as the baseline for protein-protein interaction studies.
- 2. *Renilla* luciferase activity expressed from the BIND-type vectors can be used to normalize transfection efficiency.

5. Troubleshooting

For questions not addressed here, please contact your local Promega Branch Office or Distributor. Contact information available at: www.promega.com. E-mail: techserv@promega.com

Symptoms	Causes and Comments
Low <i>Renill</i> a luciferase activity in all samples	Low transfection efficiency. Re-optimize transfection conditions for your cell line with a reporter vector such as pGL4.13[<i>luc</i> 2/SV40] Vector (Cat.# E6681).
	Check that cell cultures are not contaminated with <i>Mycoplasma</i> .
High variability in firefly luciferase activity between replicates	Unequal distribution of pGL4.31[<i>luc2P</i> / GAL4UAS/Hygro] Vector in transfection mixtures. Prepare a "master mix" of diluted pGL4.31[<i>luc2P</i> /GAL4UAS/Hygro] Vector in buffer or medium for more reproducible aliquots.
High luciferase activity from controls but low luciferase activity after co-transfection with recombinant vectors of interest (i.e., false-negative result)	Recombinant plasmid DNA impure. Purify plasmid DNA using methods that provide transfection-quality DNA. Co-transfect with a reporter DNA to determine if there are contaminants that interfere with transfection in the DNA preparation.
	One of the recombinant fusion proteins is labile or toxic. Assay for luciferase activity in cell extracts at earlier time points.
	Expression of a test protein is vector-dependent. Subclone the "X" and "Y" test proteins into the other's respective pFN10A (ACT) Flexi® Vector or pFN11A (BIND) Flexi® Vector.
	 Weak interaction between proteins cloned into the ACT and BIND Vectors: Additional macromolecules may be required for interaction if the X and Y proteins are part of a multicomponent complex. Endogenous cellular proteins may compete for interactions with the X or Y proteins. The X and Y proteins may have relatively low affinities.

6. References

- Suico, M. *et al.* (2004) Myeloid Elf-1-like factor, an ETS transcription factor, upregulates lysozyme transcription in epithelial cells through interaction with promyelocytic leukemia protein. *J. Biol. Chem.* 279, 19091–8.
- Tsuzuki, S. et al. (2004) Cross talk between retinoic acid signaling and transcription factor GATA-2. Mol. Cell. Biol. 24, 6824–36.
- Mahlknecht, U. *et al.* (2004) Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. J. Immunol. **173**, 3979–90.
- Cho, Y.-Y. *et al.* (2005) The p53 protein is a novel substrate of ribosomal S6 kinase 2 and a critical intermediary for ribosomal S6 kinase 2 and histone H3 interaction. *Cancer Res.* 65, 3596–603.
- Zhou, R. et al. (2002) SOX9 interacts with a component of the human thyroid hormone receptor-associated protein complex. Nucleic Acids Res. 30, 3245–52.
- Deltour, S. et al. (2002) The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol. Cell. Biol. 22, 4890–901.
- de Jong, A.S. et al. (2002) Multimerization reactions of coxsackievirus proteins 2B, 2C and 2BC: A mammalian two-hybrid analysis. J. Gen. Virol. 83, 783–93.
- Wessels, E. *et al.* (2005) A proline-rich region in the Coxsackievirus 3A protein is required for the protein to inhibit endoplasmic reticulum-to-golgi transport. *J. Virol.* 79, 5163–73.
- Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. *Nature* 340, 245–6.
- Chien, C. *et al.* (1991) The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. *Proc. Natl. Acad. Sci. USA* 88, 9578–82.
- Dang, C.V. et al. (1991) Intracellular leucine zipper interactions suggest c-Myc heterooligomerization. Mol. Cell. Biol. 11, 954–62.
- Fearon, E.R. *et al.* (1992) Karyoplasmic interaction selection strategy: A general strategy to detect protein-protein interactions in mammalian cells. *Proc. Natl. Acad. Sci. USA* 89, 7958–62.
- Finkel, T. et al. (1993) Detection and modulation in vivo of helix-loop-helix proteinprotein interactions. J. Biol. Chem. 268, 5–8.
- Weintraub, H. et al. (1991) The myoD gene family: Nodal point during specification of the muscle cell lineage. Science 251, 761–6.
- Davis, R.L., Weintraub, H. and Lassar, A.B. (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. *Cell* 51, 987–1000.
- Benezra, R. et al. (1990) The protein Id: A negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59.
- Buchman, A.R. and Berg, P. (1988) Comparison of intron-dependent and intronindependent gene expression. *Mol. Cell. Biol.* 8, 4395–405.

- Huang, M.T.F. and Gorman, C.M. (1990) Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. *Nucleic Acids Res.* 18, 937–47.
- Carswell, S. and Alwine, J.C. (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: Effects of upstream sequences. *Mol. Cell. Biol.* 9, 4248–58.
- Southern, P.J. and Berg, P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1, 327–41.
- Li, X. et al. (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–5.
- Shimizu, Y. *et al.* (1986) Transfer of cloned human class I major histocompatibility complex genes into HLA mutant human lymphoblastoid cells. *Mol. Cell. Biol.* 6, 1074–87.
- Schenborn, E. et al. (1998) The CheckMate[™] Mammalian Two-Hybrid System. Promega Notes 66, 2–6.

7. Related Products

Flexi® Vector Systems

Product	Size	Cat#
Flexi [®] System, Entry/Transfer	5 entry and 20 transfer reactions	C8640
Flexi [®] System, Transfer	100 transfer reactions	C8820
Carboxy Flexi [®] System, Transfer	50 transfer reactions	C9320
10X Flexi [®] Enzyme Blend (SgfI and Pme	eI) 25µl	R1851

Mammalian Two-Hybrid System

Product	Size	Cat#
CheckMate [™] Mammalian Two-Hybrid System		E2440

Luciferase Assay Systems

Product	Size	Cat#
Dual-Luciferase [®] Reporter Assay System	100 assays	E1910
Dual-Luciferase® Reporter 1000 Assay System	1,000 assays	E1980
Dual-Glo [®] Luciferase Assay System	10ml*	E2920
EnduRen™ Live Cell Substrate	0.34mg*	E6481
ViviRen™ Live Cell Substrate	0.37mg*	E6491

*Larger sizes available.

Transfection Reagents

Product	Size	Cat#
TransFast [™] Transfection Reagent	1.2mg	E2431
Tfx™-20 Reagent	4.8mg (3 × 1.6mg)	E2391
Tfx [™] -50 Reagent	2.1mg (3 × 0.7mg)	E1811
ProFection [®] Mammalian Transfection System –		
Calcium Phosphate	40 reactions	E1200

8. Appendix

8.A. pFN10A (ACT) Flexi® Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR® sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3' end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are available in the GenBank® database (GenBank®/EMBL Accession Number **DQ487211**) and on the Internet at: **www.promega.com/vectors/**

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
Acc65 I	2	1721, 2227	BstZI	2	1847, 2677
AccI	2	1309, 1743	ClaI	1	3552
AccIII	1	5531	Csp45I	2	3453, 4672
AflIII	4	1259, 1380, 4767,	CspI	1	3287
		5744	DraI	1	1704
AgeI	1	4699	DrdI	4	810, 2614, 2798,
Alw44I	2	3925, 5081			4875
AlwNI	2	3611, 5183	EarI	4	1120, 3115, 3325,
AvaI	3	1281, 1555, 1725			3798
AvaII	5	1285, 1666, 3287,	EclHKI	1	4597
		4233, 4455	EcoRI	1	1709
AvrII	1	2577	FspI	3	2181, 2873, 4374
Ball	3	11, 65, 2853	HaeII	2	2774, 5015
BamHI	2	1730, 3565	HincII	4	670, 1310, 1744,
BanII	2	1719, 3136			1990
BbeI	1	2774	HindIII	2	749, 2593
BbsI	2	929, 1088	HpaI	1	1990
BglII	1	5863	KasI	1	2770
BlpI	1	1817	KpnI	2	1725, 2231
BsaAI	3	494, 3075, 3659	MluI	1	5744
BsaBI	3	1250, 3564, 5862	NaeI	1	3273
BsaI	2	883, 4531	NarI	1	2771
BsaMI	2	1911, 2004	NcoI	5	514, 1340, 2188,
BspHI	2	3757, 5487			2484, 3203
BspMI	5	845, 1755, 2658,	NdeI	1	388
		3039, 3489	NgoMIV	1	3271
BsrGI	1	97	NheI	1	1053
BssHII	1	3168	NotI	1	1847
BssSI	3	3363, 3928, 4940	NsiI	2	2327, 2399
Bst98I	3	821, 1018, 2625	PmeI	1	1704
BstXI	1	3492	PstI	3	831, 1752, 2824

Table 2. Restriction Enzymes That Cut the pFN10A (ACT) Flexi® Vector 1-5 Times.

 Promega
 Corporation
 2800
 Woods
 Hollow
 Road
 Madison,
 WI
 53711-5399
 USA

 Toll
 Free in
 USA
 800-356-9526
 Phone
 608-274-4330
 Fax
 608-277-2516
 www.promega.com

 Revised 4/09
 Part# TM283

8.A. pFN10A (ACT) Flexi® Vector Restriction Sites (continued)

Table 2. Restriction Enzymes That Cut the pFN10A (ACT) Flexi $^{\odot}$ Vector 1-5 Times (continued).

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
PvuI	1	1337	SnaBI	2	494, 3659
PvuII	2	2253, 2877	SpeI	1	153
SalI	2	1308, 1742	SspI	4	6, 53, 2101, 3792
ScaI	2	4116, 5828	StuI	1	2576
SfiI	1	2530	Tth111I	1	2889
SgfI	1	1337	VspI	3	161, 1033, 4422
SinI	5	1285, 1666, 3287,	XbaI	1	1736
		4233, 4455	XmaI	3	1281, 1555, 1725
SmaI	3	1283, 1557, 1727	XmnI	1	3997

Table 3. Restriction Enzymes That Do Not Cut the	pFN10A (ACT) Flexi® Vector.
--	-----------------------------

AccB7I	Bsu36I	EcoRV	PmlI	SgrAI
ApaI	DraIII	FseI	PpuMI	SwaI
AscI	Eco47III	I-PpoI	PshAI	XcmI
BclI	EcoICRI	NruI	SacI	XhoI
BstEII	EcoNI	PacI	SacII	

Note: The enzymes listed in boldface type are available from Promega.

8.B. pFN11A (BIND) Flexi® Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR[®] sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3' end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are available in the GenBank[®] database (GenBank[®]/EMBL Accession Number **DQ487212**) and on the Internet at: **www.promega.com/vectors/**

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
Acc65I	2	1943, 2449	ClaI	1	4200
AccB7I	1	3003	Csp45I	2	3162, 5320
AccI	2	1531, 1965	DraI	1	1926
AccIII	1	6179	DraIII	1	2903
AflIII	4	1602, 3338, 5415,	DrdI	3	810, 2836, 5523
		6392	EarI	3	1478, 3326, 4446
AgeI	1	5347	EclHKI	1	5245
Alw44I	2	4573, 5729	EcoNI	1	3068
AlwNI	3	3064, 4259, 5831	EcoRI	2	1931, 2857
AvaI	3	1301, 1777, 1947	FspI	2	2403, 5022
AvrII	1	2799	HaeII	2	2879, 5663
Ball	3	11, 65, 3007	HindIII	2	749, 2815
BamHI	2	1952, 4213	HpaI	2	1361, 2212
BanII	1	1941	KpnI	2	1947, 2453
BbsI	4	929, 1088, 1313,	MluI	1	6392
		3996 NcoI 4		4	514, 1562, 2410,
BbuI	4	1115, 1980, 2547,	1115, 1980, 2547,		2706
		2619	NdeI	1	388
BclI	2	3440, 3649	NheI	1	1053
BglII	1	6511	NotI	1	2069
BlpI	1	2039	NsiI	2	2549, 2621
BsaAI	3	494, 3888, 4307	PmeI	1	1926
BsaBI	2	4212, 6510	PstI	2	831, 1974
BsaI	3	883, 1226, 5179	PvuI	1	1559
BsaMI	2	2133, 2226	PvuII	1	2475
BspHI	3	3724, 4405, 6135	SalI	2	1530, 1964
BspMI	2	845, 1977	ScaI	2	4764, 6476
BsrGI	3	97, 1374, 3854	SfiI	1	2752
BssSI	3	3814, 4576, 5588	SgfI	1	1559
Bst98I	3	821, 1018, 2847	SmaI	2	1779, 1949
BstZI	1	2069	SnaBI	2	494, 4307
Bsu36I	2	2909, 2955	SpeI	1	153

Table 4. Restriction Enzymes That Cut the pFN11A (BIND) $\rm Flexi^{\otimes}$ Vector 1–5 Times.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com Revised 4/09 Part# TM283 Page 21

8.B. pFN11A (BIND) Flexi® Vector Restriction Sites (continued)

Table 4. Restriction Enzymes That Cut the pFN11A (BIND) Flexi $^{\otimes}$ Vector 1–5 Times (continued).

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
SphI	4	1115, 1980, 2547,	XbaI	1	1958
		2619	XcmI	1	3805
SspI	4	6, 53, 2323, 4440	XhoI	1	1301
StuI	1	2798	XmaI	2	1777, 1947
VspI	4	161, 1033, 3256,	XmnI	2	3690, 4645
		5070			

Table 5. Restriction Enzymes That Do Not Cut the	pFN11A (BIND) Flexi® Vector.
--	------------------------------

ApaI	CspI	KasI	PmlI	SwaI
AscI	Eco47III	NaeI	PpuMI	Tth111 I
BbeI	EcoICRI	NarI	PshAI	
BssHII	EcoRV	NgoMIV	SacI	
BstEII	FseI	NruI	SacII	
BstXI	I-PpoI	PacI	SgrAI	

Note: The enzymes listed in boldface type are available from Promega.

8.C. pGL4.31[luc2P/GAL4UAS/Hygro] Vector Restriction Sites

The following restriction enzyme tables were constructed using DNASTAR[®] sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3' end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are available in the GenBank[®] database (GenBank[®]/EMBL Accession Number **DQ487213**) and on the Internet at: **www.promega.com/vectors/**

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
Acc65I	1	15	BstEII	1	4988
AccI	4	3041, 3241, 3892,	BstXI	1	4985
		5572	BstZI	4	2037, 2041, 3389,
AccIII	1	116			4961
AflIII	2	2950, 4141	Bsu36I	1	5419
AgeI	2	1370, 3812	ClaI	2	2279, 6006
Alw26I	1	5905	Csp45I	1	3877
Alw44I	1	4455	DraI	4	2245, 3801, 4900,
AlwNI	1	4557			4919
ApaI	2	269, 3178	DraIII	1	1385
AvaII	5	297, 1543, 3415,	DrdI	4	1640, 2027, 3726,
		3715, 5201			4249
AvrII	1	2720	EarI	5	1547, 2314, 2854,
Ball	4	1220, 1745, 3453,			4025, 5281
		5297	EclHKI	2	3272, 5063
BamHI	1	2286	Eco47III	4	332, 443, 2972,
BanII	3	269, 3178, 3632			4017
BbeI	1	1190	EcoRI	2	112, 1888
BbsI	4	141, 297, 3328,	FseI	1	2043
		3970	FspI	3	1061, 2324, 3567
BbuI	2	2468, 2540	HincII	3	1444, 2184, 3893
BglI	1	9	HindIII	1	204
BglII	1	187	HpaI	2	1444, 2184
BlpI	1	1193	Hsp92I	4	1187, 1635, 1830,
BsaAI	1	2951			5600
BsaBI	2	686, 2285	KasI	1	1186
BsaMI	2	2105, 2198	KpnI	1	19
BspHI	3	822, 1428, 4861	NarI	1	1187
BspMI	1	6078	NcoI	3	237, 2331, 2627
BsrGI	1	729	NheI	1	140
BssHII	1	3776	NotI	1	4961
BssSI	3	1166, 3597, 4314	NsiI	2	2470, 2542

 Table 6. Restriction Enzymes That Cut the pGL4.31[luc2P/GAL4UAS/Hygro]

 Vector 1-5 Times.

Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com Revised 4/09 Part# TM283

8.C. pGL4.31[*luc2P/GAL4*UAS/Hygro] Vector Restriction Sites (continued)

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
PmeI	1	3801	SpeI	1	5892
PshAI	2	3145, 3956	SphI	2	2468, 2540
PstI	1	4985	SspI	2	5867, 5923
PvuI	2	93, 5433	StuI	1	2719
PvuII	2	313, 2396	XbaI	4	26, 184, 2024,
SacII	1	5457			3806
SalI	1	3891	XhoI	1	69
SfiI	1	9	XmnI	1	2803
SgrAI	1	302			
SinI	5	297, 1543, 3415,			
		3715, 5201			

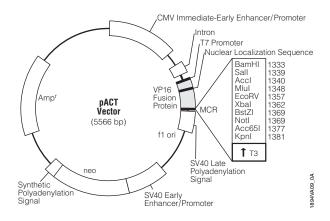

Table 6. Restriction Enzymes That Cut the pGL4.31[*luc2P/GAL4*UAS/Hygro] Vector 1-5 Times (continued).

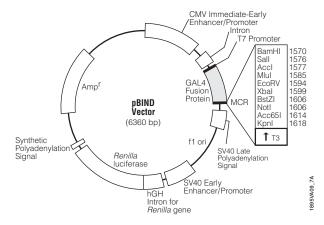
Table 7. Restriction Enzymes That Do Not Cut the pGL4.31[*luc2P/GAL4*UAS/Hygro] Vector.

AatII	CspI	MluI	PpuMI	SwaI
AccB7I	EcoICRI	NdeI	SacI	Tth111 I
AscI	EcoNI	NruI	SgfI	VspI
BsaI	EcoRV	PacI	SmaI	XcmI
Bst98I	I-PpoI	PmlI	SnaBI	XmaI

Note: The enzymes listed in boldface type are available from Promega.

8.D. Control Vector Maps

Figure 5. pACT Vector circle map and sequence reference points.


pACT Vector sequence reference points:

CMV immediate-early enhancer	1-659
CMV immediate-early promoter	669-750
chimeric intron	890-1022
T7 EEV sequencing primer binding site	1053-1074
T7 RNA polymerase promoter (-17 to +2)	1067-1085
GAL4 1-11 amino acids	1116-1148
VP16 fusion protein	1188-1325
multiple cloning region	1333-1382
T3 RNA polymerase promoter (-16 to +3)	1402-1420
SV40 late polyadenylation signal	1429-1650
phage f1 origin of replication	1693-2148
SV40 early enhancer/promoter	2181-2526
SV40 minimum origin of replication	2424-2489
neomycin (neo) phosphotransferase coding region	2571-3365
synthetic polyadenylation signal	3429-3477
β -lactamase (Amp ^r) coding region	3874-4734

Vector sequences are available in the GenBank[®] database (GenBank[®]/EMBL Accession Number AF264723) and on the Internet at: www.promega.com/vectors/

8.D. Control Vector Maps (continued)

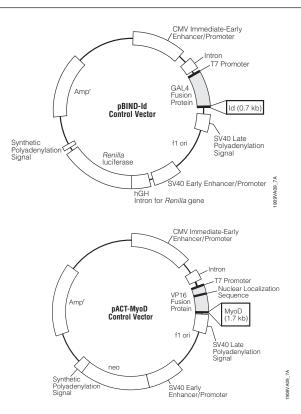


Figure 6. pBIND Vector circle map and sequence reference points.

pBIND Vector sequence reference points:

CMV immediate-early enhancer	1-659
CMV immediate-early promoter	669-750
chimeric intron	890-1022
T7 EEV sequencing primer binding site	1053-1074
T7 RNA polymerase promoter (-17 to +2)	1067-1085
GAL4 fusion protein	1116-1556
multiple cloning region (MCR)	1570-1619
T3 RNA polymerase promoter (-16 to +3)	1639-1657
SV40 late polyadenylation signal	1666-1887
phage f1 origin of replication	1982-2437
SV40 early enhancer/promoter	2527-2872
SV40 minimum origin of replication	2770-2835
hGH intron for Renilla gene	2924-3183
Renilla luciferase gene coding region	3208-4143
synthetic polyadenylation signal	4201-4249
β -lactamase (Amp ^r) coding region	4668-5528

Vector sequences are available in the GenBank[®] database (GenBank[®]/EMBL Accession Number AF264722) and on the Internet at: www.promega.com/vectors/

Figure 7. pBIND-Id and pACT-MyoD Control Vector circle maps. The protein product of the Id cDNA sequence in the pBIND-Id Vector is known to interact with the protein product of the MyoD cDNA sequence in the pACT-MyoD Vector.

(a) READ THIS FIRST BEFORE OPENING PRODUCT

For research use only. The terms of the limited license conveyed with the purchase of this product are as follows: Researchers may use this product in their own research and they may transfer derivatives to others for such research use provided that at the time of transfer a copy of this label license is given to the recipients and the recipients agree to be bound by the conditions of this label license. Researchers shall have no right to modify or otherwise create variations of the nucleotide sequence of the luciferase gene except that Researchers may: (1) clone heterologous DNA sequences at either or both ends of said luciferase gene so as to create fused gene sequences provided that the coding sequence of the resulting luciferase gene has no more than four deoxynucleotides missing at the affected terminus when compared to the intact luciferase gene sequence, and (2) insert and remove nucleic acid sequences in furtherance of splicing research predicated on the inactivation or reconstitution of the luminescent activity of the encoded luciferase. In addition, Researchers must do one of the following: (1) use luminescent assay reagents purchased from Promega Corporation for all determinations of luminescence activity resulting from the research use of this product and its derivatives; or (2) contact Promega to obtain a license for the use of the product and its derivatives. No other use or transfer of this product or its derivatives is authorized without the express written consent of Promega including, without limitation, Commercial Use. Commercial Use means any and all uses of this product and derivatives by a party for monetary or other consideration and may include but is not limited to use in: (1) product manufacture; and (2) to provide a service, information or data; and/or resale of the product or its derivatives, whether or not such product or derivatives are resold for use in research. With respect to such Commercial Use, or any diagnostic, therapeutic or prophylactic uses, please contact Promega for supply and licensing information. If the purchaser is not willing to accept the conditions of this limited use statement, Promega is willing to accept the return of the unopened product and provide the purchaser with a full refund. However, in the event the product is opened, then the purchaser agrees to be bound by the conditions of this limited use statement. The above license relates to Promega patents and/or patent applications on improvements to the luciferase gene.

(b)The CMV promoter and its use are covered under U.S. Pat. Nos. 5,168,062 and 5,385,839 owned by the University of Iowa Research Foundation, Iowa City, Iowa, and licensed FOR RESEARCH USE ONLY. Commercial users must obtain a license to these patents directly from the University of Iowa Research Foundation.

^(c)For research use only. Persons wishing to use this product or its derivatives in other fields of use, including without limitation, commercial sale, diagnostics or therapeutics, should contact Promega Corporation for licensing information.

(d)Patent Pending.

(e)U.S. Pat. No. 5,670,356.

^(f)Licensed from University of Georgia Research Foundation, Inc., under U.S. Pat. Nos. 5,292,658, 5,418,155, Canadian Pat. No. 2,105,984 and related patents.

⁽⁸⁾The method of recombinant expression of *Coleoptera* luciferase is covered by U.S. Pat. Nos. 5,583,024, 5,674,713 and 5,700,673. A license (from Promega for research reagent products and from The Regents of the University of California for all other fields) is needed for any commercial sale of nucleic acid contained within or derived from this product.

© 2006, 2009 Promega Corporation. All Rights Reserved.

Dual-Glo, Dual-Luciferase, Flexi, ProFection and TNT are registered trademarks of Promega Corporation. Bright-Glo, CheckMate, EnduRen, PureYield, Tfx, TransFast and ViviRen are trademarks of Promega Corporation.

DNASTAR is a registered trademark of DNASTAR, Inc. GenBank is a registered trademark of US Dept of Health and Human Services. Geneticin is a registered trademark of Life Technologies, Inc.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.