

PRINTED IN USA. Revised 6/09

Technical Bulletin

Monster Green® Fluorescent Protein phMGFP Vector

INSTRUCTIONS FOR USE OF PRODUCT E6421.

PLEASE NOTE

For research use only. Researchers may use this product in their own research and they may transfer derivatives to others for research use provided that at the time of transfer a copy of this label license is given to the recipients and the recipients agree to be bound by the terms of this label license. Researchers shall have no right to modify or otherwise create variations of the nucleotide sequence of the Monster Green[®] gene. Researchers may however clone heterologous DNA sequences at either or both ends of said Monster Green[®] gene so as to create fused gene sequences provided that the coding sequence of the resulting Monster Green[®] gene has no more than four (4) deoxynucleotides missing at the affected terminus when compared to the intact Monster Green® gene sequence. Research performed on behalf of another party is permitted provided no monetary payment or other consideration is exchanged for such performance. No other use or transfer of this product or its derivatives is authorized without the express, written consent of Promega including, without limitation, Commercial Use. Commercial Use means any and all uses of this product and derivatives by a party for monetary or other consideration and may include but is not limited to use in: (1) product manufacture; and (2) to provide a service, information or data; and/or resale of the product or its derivatives, whether or not such product or derivatives are resold for use in research. With respect to such Commercial Use, or any diagnostic, therapeutic or prophylactic uses, please contact Promega for supply and licensing information. If the purchaser is not willing to accept the conditions of this limited use statement, Promega is willing to accept return of the unopened product and provide purchaser with a full refund. However, in the event that the product is opened, then purchaser agrees to be bound by the conditions of this limited use statement.

www.promega.com

Part# TB320

Monster Green® Fluorescent Protein phMGFP Vector

All technical literature is available on the Internet at: www.promega.com/tbs Please visit the web site to verify that you are using the most current version of this Technical Bulletin. Please contact Promega Technical Services if you have questions on use of this system. E-mail: techserv@promega.com

1.	Description	1
2.	Product Components and Storage Conditions	2
3.	General Considerations	3
4.	phMGFP Vector Backbone	7
5.	phMGFP Vector Map	8
6.	Appendix A. phMGFP Vector Restriction Sites and Sequence Accession Number B. References	9 9 11 12

1. Description

Green fluorescent protein (GFP) is commonly used to monitor gene expression and protein trafficking within intact cells. GFP fusion proteins are easily visualized by standard fluorescence microscopy to track real-time subcellular localization of a protein of interest.

The phMGFP Vector^(a-d) contains the open reading frame for the Monster Green[®] Fluorescent Protein cloned into a mammalian expression vector. The Monster Green[®] Fluorescent Protein is encoded by an improved synthetic version of the green fluorescent protein gene originally cloned from *Montastrea cavernosa* (Great Star Coral). The synthetic gene (hMGFP) expresses a 26kDa protein that shows improved fluorescence intensity compared to the native gene. Furthermore, the hMGFP gene has been codon optimized and cleared of most consensus transcription factor binding sites to ensure reliability and high expression levels.

The spectral properties of the Monster Green® Fluorescent Protein are slightly red-shifted compared to other commercially available GFPs. Peak excitation occurs at 505nm, with a shoulder at 480nm; peak emission occurs at 515nm. We recommend using standard fluoroisothiocyanate (FITC) filters to visualize hMGFP fluorescence. Fluorescent microscopy analysis of hMGFP expression may be performed using an excitation filter of 470±20nm (470/40nm) and an emission filter of 515nm (long pass). For FACS® analyses, we recommend using a laser at 488nm for excitation and filters of 530±15nm (530/30nm) for emission.

O Promega

Figure 1. Excitation and emission spectra of the Monster Green® Fluorescent Protein. CHO cells were transfected with the phMGFP Vector. Twenty-four hours after transfection, cells were lysed in Glo Lysis Buffer, 1X (Cat.# E2661), and the excitation and emission spectra were generated using the Spex FluoroLog®-2 spectrofluorometer. The emission spectrum was collected on cell lysates excited at 480nm. Excitation data were collected at 400–530nm with an emission wavelength of 540nm.

2.. Product Components and Storage Conditions

Product		Size	Cat. #
Monster Green [®] Fluorescent Protein	phMGFP Vector	20µg	E6421

Storage Conditions: Store the Monster Green[®] Fluorescent Protein phMGFP Vector at -20°C or below.

3. General Considerations

The native GFP gene originally cloned from *Montastrea cavernosa* expresses a protein that photobleaches and is very dim, making it unsuitable as a reporter. To improve the fluorescent properties of the native GFP, random mutagenesis was performed to generate MGFP. The resulting clone expresses a green fluorescence protein that is resistant to photobleaching and brighter than the native gene. The MGFP gene was further modified (codon optimization and removal of most consensus sequences for transcription factor binding) to generate the hMGFP gene.

Translation of the MGFP gene involves codons that are not frequently used in mammalian cells, thereby reducing its expression efficiency in mammalian cells. To improve expression levels, the synthetic hMGFP gene utilizes the highestusage mammalian codons where possible. Low-usage codons from *E. coli* have been eliminated where possible to support expression in *E. coli* when the gene is cloned into a bacterial expression vector. Table 1 provides a comparison of codon usage between the synthetic hMGFP and the MGFP genes. To further increase mammalian expression efficiency, the Kozak sequence for translation initiation has been added to the beginning of the gene.

The MGFP gene contains a multitude of consensus transcription factor binding sites, which can result in nonspecific transcriptional activation under certain experimental conditions and therefore compromise the reliability of MGFP as a reporter. To improve reliability of protein expression, the number of consensus transcription factor binding sites has been reduced from 67 in the MGFP gene to 3 in the synthetic hMGFP (Figure 2). In addition, the synthetic hMGFP gene has been modified to minimize other undesirable elements, including eukaryotic polyadenylation signals (AATAAA).

The number of restriction sites that are commonly used in cloning has been minimized within the hMGFP gene. For cloning convenience, a non-unique NcoI and a unique XbaI restriction site have been added to the beginning and end of the hMGFP gene, respectively. EcoRV, SmaI and NaeI restriction sites have been added to allow convenient creation of protein fusions. The EcoRV and SmaI sites were added to the vector before the starting ATG codon of hMGFP. The NaeI site was added to the hMGFP open reading frame just before the stop codon. Each of these sites, when digested, results in blunt-ended fragments that preserve the translational reading frame of hMGFP.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Printed in USA.

 Perived 6/09

Figure 2. Transcription factor binding sites in the MGFP and synthetic hMGFP genes. Most (96%) of the transcription factor binding sites in the MGFP gene have been removed to create the synthetic hMGFP gene.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB320

 Page 4

Table 1. Comparison of Codon Usage Between the MGFP and Synthetic hMGFP Genes.

Note: To introduce the Kozak sequence, a serine residue in the MGFP gene was changed to a glycine residue in the synthetic hMGFP gene. To create the unique NaeI site, a lysine residue in the MGFP gene was changed to a glycine residue.

Amino Acid	Codon	Number of Codons in MGFP	Number of Codons in hMGFP	Percent Use in Human Cells
	GCT	5	3	28.0
415	GCC	5	7	41.6
Ald	GCA	1	1	20.0
	GCG	0	0	10.3
	CGT	2	1	8.9
	CGC	1	5	21.4
Ara	CGA	3	1	10.2
Aig	CGG	0	2	19.7
	AGA	0	0	18.8
	AGG	3	0	21.0
Acm	AAC	6	5	57.5
ASII	AAT	1	2	42.3
Acn	GAT	6	18	42.8
Азр	GAC	13	1	57.2
Cuc	TGT	2	1	40.6
Cys	TGC	1	2	59.4
Clm	CAA	0	0	24.8
GIII	GAG	6	6	75.2
Clu	GAA	8	1	39.3
Giù	GAG	5	12	60.7
	GGT	5	3	15.8
Clv	GGC	6	13	35.8
City	GGA	4	3	24.1
	GGG	4	2	24.4
Lie	CAT	5	0	39.6
1 115	CAC	2	7	60.4
	ATT	5	1	33.1
Ile	ATC	3	11	54.0
	ATA	4	0	12.9

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Printed in USA.
 Part# TB320

 Revised 6/09
 Page 5

 Table 1. Comparison of Codon Usage Between the MGFP and Synthetic hMGFP

 Genes (continued).

Amino Acid	Codon	Number of Codons in MGFP	Number of Codons in hMGFP	Percent Use in Human Cells
	TTA	0	0	5.5
	TTG	4	1	11.5
Lou	CTT	2	1	11.2
Leu	CTC	0	2	20.8
	CTA	1	2	6.5
	CTG	5	6	44.4
I ve	AAA	12	5	38.9
Lys	AAG	12	18	61.1
Met	ATG	10	10	100
Pho	TTT	5	1	41.4
The	TTC	7	11	58.9
	CCT	4	2	27.3
Pro	CCC	0	9	35.3
110	CCA	6	0	25.7
	CCG	2	1	11.6
	TCT	1	0	18.2
	TCC	2	0	24.4
Ser	TCA	0	0	12.8
001	TCG	0	1	5.8
	AGT	1	1	13.0
	AGC	2	3	25.8
	ACT	4	1	22.4
Thr	ACC	0	9	40.5
1111	ACA	6	2	25.4
	ACG	2	0	11.8
Trp	TGG	2	2	100
Tur	TAT	5	1	39.9
1 91	TAC	8	12	60.1
	GTT	5	1	16.4
Val	GTC	4	3	25.7
Y LLI	GTA	4	1	9.3
	GTG	5	13	48.7

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB320

 Part# TB320

 Printed in USA.

 Revised 6/09

4. phMGFP Vector Backbone

Some functional regions in the phMGFP Vector backbone are listed below:

CMV Enhancer/Promoter

The CMV enhancer/promoter region present in the phMGFP vector allows strong, constitutive expression in many cell types. The promiscuous nature of the CMV promoter/enhancer has been demonstrated in transgenic mice, where its transcriptional activity was observed in 24 of 28 murine tissues examined (1).

Chimeric Intron

Downstream of the enhancer/promoter region is a chimeric intron composed of the 5'-donor site from the first intron of the human β -globin gene and the branch and 3'-acceptor site from the intron between the leader and body of an immunoglobin gene heavy chain variable region (2). The sequences of the donor and acceptor sites, along with the branch point site, have been changed to match the consensus sequences for splicing (3). Transfection studies have demonstrated that the presence of an intron flanking the cDNA insert frequently increases the level of gene expression (4–7). The intron is located upstream of the hMGFP sequence to minimize the utilization of cryptic 5'-donor splice sites that may reside within the gene (8).

T7 Promoter

A T7 RNA polymerase promoter is located downstream of the chimeric intron and immediately precedes the hMGFP gene. This promoter can be used to synthesize RNA transcripts in vitro using T7 RNA Polymerase (Cat.# P2075). In vitro translation of these transcripts using rabbit reticulocyte lysate-based systems (e.g., the TNT[®] Coupled Rabbit Reticulocyte Lysate Systems and TNT[®] Quick Coupled Transcription/Translation Systems) is not recommended because high light-absorbing properties of the hemoglobin present in these lysates can interfere with the detection of GFP fluorescence (9).

Note: Use the T7 EEV Promoter Primer (Cat.# Q6700) to sequence the phMGFP Vector. **Do not** use the T7 Promoter Primer (Cat.# Q5021).

SV40 Late Polyadenylation Signal

Polyadenylation signals cause termination of transcription by RNA polymerase II and signal the addition of approximately 200–250 adenosine residues to the 3'end of the RNA transcript (10). Polyadenylation has been shown to enhance RNA stability and translation efficiency (11,12). The late SV40 polyadenylation signal is extremely efficient and has been shown to increase the steady-state level of RNA approximately fivefold over levels achieved with the early SV40 polyadenylation signal (13).

5. phMGFP Vector Map

Figure 3. phMGFP Vector map. Additional description: hMGFP, open reading frame of hMGFP; Amp^T, gene conferring ampicillin resistance in *E. coli*; ori, origin of plasmid replication in *E. coli*. Arrows within the hMGFP and Amp^T genes indicate the direction of transcription.

phMGFP Vector Sequence Reference Points:

CMV enhancer/promoter	1-742
Chimeric intron	857-989
T7 EEV Promoter Primer binding site	1020-1041
T7 promoter	1034-1052
hMGFP open reading frame	1076-1759
SV40 late polyadenylation signal	1807-2028
β-lactamase (Amp ^r) coding region	3015-3875

Note: Use the T7 EEV Promoter Primer (Cat.# Q6700) to sequence the phMGFP Vector. **Do not** use the T7 Promoter Primer (Cat.# Q5021).

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB320

 Printed in USA.

 Page 8

6. Appendix

6.A. phMGFP Vector Restriction Sites and Sequence Accession Number

The following restriction enzyme tables were constructed using DNASTAR® sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3'-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or if you identify a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. The vector sequence is available in the GenBank® database (GenBank®/EMBL Accession Number **AY218848**) and online at: **www.promega.com/vectors/**

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	5	278, 331, 414, 600,	DraI	4	1998, 3224, 3916,
		2883			3935
AccB7I	1	1654	DraII	1	2822
AflII	2	820, 1017	DraIII	2	1654, 2356
Alw44I	3	2633, 3130, 4376	DrdI	4	809, 2400, 2719,
AlwNI	1	4281			4588
AvaI	2	1058, 1325	DsaI	2	513, 1074
AvaII	5	1195, 1363, 1657,	EagI	1	1771
		3438, 3660	EarI	2	2061, 3003
Ball	2	10, 64	EclHKI	1	3802
BanII	3	721, 1506, 2282	Eco52I	1	1771
BbeI	2	1125, 1218	EcoICRI	1	719
BbsI	2	928, 1267	EcoRV	1	1066
BclI	1	1083	EheI	2	1123, 1216
BglII	1	4702	FspI	2	2102, 3579
BsaI	2	882, 3736	HaeII	5	1125, 1218, 2198,
BsaOI	5	1774, 2083, 3284,			2206, 4450
		3433, 4356	HincII	3	669, 1453, 1937
BsaAI	3	493, 1525, 2353	HindII	3	669, 1453, 1937
BsaBI	1	2039	HindIII	1	748
BsaMI	2	1858, 1951	HpaI	1	1937
BsmI	2	1858, 1951	KasI	2	1121, 1214
BspHI	3	2857, 2962, 3970	NaeI	1	1753
BspMI	1	844	NarI	2	1122, 1215
BsrGI	2	96, 1428	NcoI	2	513, 1074
BssSI	4	1336, 2826, 3133,	NdeI	2	387, 2628
		4517	NgoMIV	1	1751
Bst98I	2	820, 1017	NheI	1	1052
BstEII	1	1265	NotI	1	1771
BstXI	1	1627	NspI	1	2777
BstZI	1	1771	PflM1	1	1654
Cfr10I	2	1751, 3717	PspAI	1	1058
ClaI	1	2043	PstI	1	830

Table 2. Restriction Enzymes That Cut the phMGFP Vector 1-5 Times.

Note: The enzymes listed in boldface type are available from Promega.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Printed in USA.

 Revised 6/09

O Promega

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
PvuI	2	2083, 3433	SspI	4	5, 52, 2561, 2997
SacI	1	721	StyI	3	513, 1074, 1290
ScaI	2	1030, 3321	TfiI	1	1371
SinI	5	1195, 1363, 1657,	Tth111I	1	1448
		3438, 3660	VspI	2	160, 3627
SmaI	1	1060	XbaI	1	1764
SnaBI	1	493	XmaI	1	1058
SpeI	1	152	XmnI	1	3202

Table 3. Restriction Enzymes That Do Not Cut the phMGFP Vector.

AccI	BlpI	EcoNI	PmeI	SgfI
AccIII	Bpu1102I	EcoRI	PmlI	SgrAI
Acc 65I	Bsp120I	FseI	Ppu10I	SphI
AflIII	BssHII	I-PpoI	Ppu I	SplI
AgeI	Bst1107I	KpnI	PshAI	SrfI
ApaI	Bsu36I	MluI	Psp5II	Sse8387I
AscI	CspI	NruI	PvuII	StuI
AvrII	Csp45I	NsiI	RsrII	SwaI
BamHI	Eco47III	PacI	SacII	XcmI
BbrPI	Eco72I	PaeR7I	Sall	XhoI
BbuI	Eco81I	PinAI	SfiI	

AciI	BsrI	FokI	MaeIII	PleI
AcyI	BsrSI	HaeIII	MboI	RsaI
AluI	Bst71I	HgaI	MboII	Sau3AI
Alw26I	BstOI	HhaI	MnlI	Sau96I
AspHI	BstUI	HinfI	MseI	ScrFI
BanI	CfoI	HpaII	MspI	SfaNI
BbvI	DdeI	HphI	MspA1I	TaqI
BglI	DpnI	Hsp92I	NciI	Tru9I
BsaHI	DpnII	Hsp92II	NdeII	XhoII
BsaJI	EaeI	MaeI	NlaIII	
Bsp1286I	Fnu4HI	MaeII	NlaIV	

Note: The enzymes listed in boldface type are available from Promega.

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Part# TB320
 Printed in USA.
 Revised 6/09
 Revised 6/09

6.B. References

- 1. Schmidt, E.V. *et al.* (1990) The cytomegalovirus enhancer: A pan-active control element in transgenic mice. *Mol. Cell. Biol.* **10**, 4406–11.
- Bothwell, A.L. *et al.* (1981) Heavy chain variable region contribution to the NP^b family of antibodies: Somatic mutation evident in a gamma 2a variable region. *Cell* 24, 625–37.
- Senapathy, P., Shapiro, M.B. and Harris, N.L. (1990) Splice junctions, branch point sites, and exons: Sequence statistics, identification, and applications to genome project. *Methods Enzymol.* 183, 252–78.
- Gross, M.K., Kainz, M.S. and Merrill, G.F. (1987) Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L cells. *Mol. Cell. Biol.* 7, 4576–81.
- Buchman, A.R. and Berg, P. (1988) Comparison of intron-dependent and intronindependent gene expression. *Mol. Cell. Biol.* 8, 4395–405.
- Evans, M.J. and Scarpulla, R.C. (1989) Introns in the 3'-untranslated region can inhibit chimeric CAT and β-galactosidase gene expression. *Gene* 84, 135–42.
- Huang, M.T. and Gorman, C.M. (1990) Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. *Nucleic Acids Res.* 18, 937–47.
- Huang, M.T. and Gorman, C.M. (1990) The simian virus 40 small-t intron, present in many common expression vectors, leads to aberrant splicing. *Mol. Cell. Biol.* 10, 1805–10.
- van Kampen, E.J. and Zijlstra, W.G. (1983) Spectrophotometry of hemoglobin and hemoglobin derivatives. Adv. Clin. Chem. 23, 199–257.
- 10. Proudfoot, N. (1991) Poly(A) signals. Cell 64, 671-4.
- 11. Bernstein, P. and Ross, J. (1989) Poly(A), poly(A) binding protein and the regulation of mRNA stability. *Trends Biochem. Sci.* **14**, 373–7.
- Jackson, R.J. and Standart, N. (1990) Do the poly(A) tail and 3' untranslated region control mRNA translation? *Cell* 62, 15–24.
- Carswell, S. and Alwine, J.C. (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: Effects of upstream sequences. *Mol. Cell. Biol.* 9, 4248–58.

6.C. Related Products

Product	Size	Cat.#
TransFast™ Transfection Reagent	1.2mg	E2431
Transfectam [®] Reagent for the Transfection		
of Eukaryotic Cells	1mg	E1231
	0.5mg	E1232
Tfx™-50 Reagent	2.1mg	E1811
Tfx™-20 Reagent	4.8mg	E2391
ProFection® Mammalian Transfection System –		
Calcium Phosphate	40 reactions	E1200
Glo Lysis Buffer, 1X	100ml	E2661
T7 EEV Promoter Primer	2µg	Q6700

(a)Licensed under U.S. Patent 7,291,711 and other patents pending.

^(b)Certain applications of this product may require licenses from others.

^(e)The CMV promoter and its use are covered under U.S. Pat. Nos. 5,168,062 and 5,385,839 owned by the University of Iowa Research Foundation, Iowa City, Iowa, and licensed FOR RESEARCH USE ONLY. Research Use includes contract research for which monetary or other consideration may be received. Other commercial users must obtain a license to these patents directly from the University of Iowa Research Foundation.

^(d)For research use only. Researchers may use this product in their own research and they may transfer derivatives to others for research use provided that at the time of transfer a copy of this label license is given to the recipients and the recipients agree to be bound by the terms of this label license. Researchers shall have no right to modify or otherwise create variations of the nucleotide sequence of the Monster Green® gene. Researchers may however clone heterologous DNA sequences at either or both ends of said Monster Green® gene so as to create fused gene sequences provided that the coding sequence of the resulting Monster Green® gene has no more than four (4) deoxynucleotides missing at the affected terminus when compared to the intact Monster Green® gene sequence. Research performed on behalf of another party is permitted provided no monetary payment or other consideration is exchanged for such performance. No other use or transfer of this product or its derivatives is authorized without the express, written consent of Promega including, without limitation, Commercial Use. Commercial Use means any and all uses of this product and derivatives by a party for monetary or other consideration and may include but is not limited to use in: (1) product manufacture; and (2) to provide a service, information or data; and/or resale of the product or its derivatives, whether or not such product or derivatives are resold for use in research. With respect to such Commercial Use, or any diagnostic, therapeutic or prophylactic uses, please contact Promega for supply and licensing information. If the purchaser is not willing to accept the conditions of this limited use statement, Promega is willing to accept return of the unopened product and provide purchaser with a full refund. However, in the event that the product is opened, then purchaser agrees to be bound by the conditions of this limited use statement.

© 2003, 2004, 2006, 2007, 2009 Promega Corporation. All Rights Reserved.

Monster Green, ProFection, TNT and Transfectam are registered trademarks of Promega Corporation. Tfx and TransFast are trademarks of Promega Corporation.

DNASTAR is a registered trademark of DNASTAR, Inc. FACS is a registered trademark of Becton, Dickinson and Company. FluoroLog is a registered trademark of Horiba Jobin Yvon, Inc. GenBank is a registered trademark of U.S. Dept of Health and Human Services.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB320

 Part# TB320

 Printed in USA.

 Revised 6/09