Certificate of Analysis

SP6 RNA Polymerase:

 Part No.
 Size (units)

 P108B
 1,000

 P108G
 5,000

 P408A
 (High Conc.) 2,500

Description: SP6, T3 and T7 RNA Polymerases are DNA-dependent RNA polymerases that exhibit extremely high specificity for their cognate promoter sequences. For example, only SP6 DNA or DNA cloned downstream from an SP6 promoter can serve as a template for SP6 RNA Polymerase-directed RNA synthesis (1,2); SP6 RNA Polymerase does not recognize T3 or T7 RNA Polymerase promoters as a start site for transcription. SP6, T3 and T7 RNA Polymerases will incorporate ³²P, ³⁵S and ³H nucleotide phosphates. SP6 RNA Polymerase is available in the RiboMAX™ and Riboprobe® Systems.

Applications of phage RNA polymerases include:

- Synthesis of RNA transcripts for hybridization probes (3)
- Synthesis of large amounts of nonlabeled RNA (3)
- In vitro synthesis of capped RNA transcripts (3)
- RNase protection assays

Transcription Optimized 5X Buffer (Cat.# P1181): When the Transcription Optimized 5X Buffer supplied with this enzyme is diluted 1:5 to 1X, it has a composition of 40mM Tris (pH 7.9), 6mM MgCl₂, 2mM spermidine and 10mM NaCl.

100mM DTT (Cat.# P1171): Add to a final concentration of 10mM in a standard transcription reaction.

Enzyme Storage Buffer: SP6 RNA Polymerase is supplied in 20mM potassium phosphate buffer (pH 7.7), 1mM EDTA, 10mM DTT, 0.1M NaCl, 0.1% Triton® X-100 and 50% (v/v) glycerol.

Source: E. coli strain expressing a recombinant clone

Unit Definition: One unit is defined as the amount of enzyme required to catalyze the incorporation of 5nmol of rCTP into acid-insoluble product in 1 hour at 37°C in a total volume of 100µl (4). The reaction conditions are: 40mM Tris-HCl (pH 7.9), 10mM NaCl, 6mM MgCl₂, 10mM DTT, 2mM spermidine, 0.05% Tween®-20, 0.5mM each of rATP, rGTP, rCTP and rUTP, 0.5µCi [3H]rCTP and 2µg of supercoiled pGEM®-5Zf(+) Vector DNA (Cat.# P2241). See the unit concentration on the Product Information Label.

Usage Note: Reference 2 contains additional information and applications for SP6 RNA Polymerase.

Storage Temperature: Store at -20° C. Avoid exposure to frequent temperature changes. See the expiration date on the Product Information Label.

Quality Control Assays

Activity Assays

RNA Synthesis Assay: SP6 RNA Polymerase is tested for RNA synthesis using the same conditions as for Unit Definition (above) except that unlabeled rCTP is limited to 12µM, the Tween®-20 is excluded and pGEM® Express Positive Control DNA (Cat.# P2561) is used as the template. Separate reactions are performed using 1, 2, 5, 10 and 20 units of enzyme for 1 hour at 37°C. Minimum passing specification is ≥65% incorporation of [³H]rCTP using 20 units of enzyme.

Transcription Assay: SP6 RNA Polymerase is tested in a transcription assay using pGEM® Express Positive Control DNA incubated for 1 hour at 37°C in Transcription Optimized 1X Buffer with 5 or 10 units of enzyme. Transcripts are denatured by heating at 65°C for 10 minutes in formamide/formaldehyde buffer and resolved in a 1% agarose gel in TAE buffer. Specification is to obtain intact transcripts of the correct size with minimal smearing.

Contaminant Activity

DNase and RNase Assay: To test for nuclease activity, 50ng of radiolabeled DNA or RNA is incubated with 100 units of SP6 RNA Polymerase in Transcription Optimized 1X Buffer for 1 hour at 37°C. The release of radiolabeled nucleotides is monitored by scintillation counting of TCA-soluble material. Minimum passing specification is ≤1% release for DNase and RNase activity.

 $\textbf{Physical Purity:} \ \ \text{Purity is } > 90\% \ \ \text{as judged by SDS-polyacrylamide gels with Coomassie} \\ \text{@ blue staining.} \\$

References

Signed by:

- Butler, E.T. and Chamberlain, M.J. (1982) J. Biol. Chem. 257, 5772–8.
- 2. Melton, D.A. et al. (1984) Nucl. Acids Res. 12, 7035-56.
- 3. Riboprobe® in vitro Transcription Systems Technical Manual #TM016, Promega Corporation.
- 4. Knoche, K., Stevens, J. and Bandziulis, R. (1997) Promega Notes 61, 2–5.

Flor Wheeler

Part# 9PIP108 Revised 1/18

AF9PIP108 0118P108

Promega Corporation			
2800 Woods Hollow Road			
Madison, WI 53711-5399	USA		
Telephone	608-274-4330		
Toll Free	800-356-9526		
Fax	608-277-2516		
Internet	www.promega.com		

PRODUCT USE LIMITATIONS, WARRANTY, DISCLAIMER

Promega manufactures products for a number of intended uses. Please refer to the product label for the intended use statements for specific products. Promega products contain chemicals which may be harmful if misused. Due care should be exercised with all Promega products to prevent direct human contact.

Each Promega product is shipped with documentation stating specifications and other technical information. Promega products are warranted to meet or exceed the stated specifications. Promega's sole obligation and the customer's sole remedy is limited to replacement of products free of charge in the event products fail to perform as warranted. Promega makes no other warranty of any kind whatsoever, and SPECIFICALLY DISCLAIMS AND EXCLUDES ALL OTHER WARRANTIES OF ANY KIND OR NATURE WHATSOEVER, DIRECTLY OR INDIRECTLY, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, AS TO THE SUITABILITY, PRODUCTIVITY, DURABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, CONDITION, OR ANY OTHER MATTER WITH RESPECT TO PROMEGA PRODUCTS. In no event shall Promega be liable for claims for any other damages, whether direct, incidental, foreseeable, consequential, or special (including but not limited to loss of use, revenue or profit), whether based upon warranty, contract, tort (including negligence) or strict liability arising in connection with the sale or the failure of Promega products to perform in accordance with the stated specifications.

pGEM, RNasin, Riboprobe and TnT are registered trademarks of Promega Corporation. RiboMAX is a trademark of Promega Corporation.

Coomassie is a registered trademark of Imperial Chemical Industries, Ltd. Triton is a registered trademark of Union Carbide Chemicals and Plastics Technology Corporation. Tween is a registered trademark of ICI Americas, Inc.

All specifications are subject to change without prior notice.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.

Part# 9PIP108 Printed in USA. Revised 1/18.

Usage Information

I. Standard Applications

Protocols for three standard applications of phage RNA polymerases are given. Reference 3 contains additional information and applications for the phage RNA polymerases. Please read the pertinent section(s) and prepare any reagents as appropriate. Gloves should be worn when working with transcription reagents or RNA transcripts to prevent RNase contamination.

Materials to Be Supplied by the User

All materials except $\alpha^{-32}P$ and the DNA template, linearized, can be found in Sections II and III.

(Solution compositions are provided in Section II.)

- · DNA template, linearized
- Nuclease-Free Water
- · Recombinant RNasin® Ribonuclease Inhibitor
- rNTP mix or rNTP capping mix
- [α-32P]rCTP (400Ci/mmol, 10Ci/ml)
- Ribo m⁷G Cap Analog, 5mM (Cat.# P1711)

A. Synthesis of High Specific Activity RNA Probes

 In a microcentrifuge tube, add the following reagents at room temperature in the order listed:

order noted.	
Transcription Optimized 5X Buffer	4μl
DTT, 100mM	2µl
Recombinant RNasin® Ribonuclease	
Inhibitor	20 units
rATP, rGTP and rUTP mix, 2.5mM each	4μl
rCTP, 100µM	2.4µl
DNA template, linearized (in water or	·
TE buffer at 0.2–1.0μg/μl)	1µl
$[\alpha^{-32}P]rCTP$ (50µCi at 10mCi/ml)	5µl
Phage RNA polymerase	20 units
Nuclease-Free Water to final volume of	20µl

2. Incubate for 1 hour at 37°C.

B. Synthesis of Nonlabeled RNA

 In a microcentrifuge tube, add the following reagents at room temperature in the order listed:

Transcription Optimized 5X Buffer	20μΙ
DTT, 100mM	10µl
Recombinant RNasin® Ribonuclease	
Inhibitor	100 units
rNTP mix (see Section II)	20µl
DNA template, linearized (in water or	
TE buffer at 2–5μg)	5µl
Phage RNA polymerase	<u>40 units</u>
Nuclease-Free Water to final volume of	100µl

2. Incubate for 2 hours at 37°C.

C. In Vitro Synthesis of Capped RNA Transcripts

 In a microcentrifuge tube, add the following reagents at room temperature in the order listed:

Oldel listed.	
Transcription Optimized 5X Buffer	10µl
DTT, 100mM	5μΙ
Recombinant RNasin® Ribonuclease	
Inhibitor	50 units
rNTP capping mix (see Section II)	5μΙ
Ribo m ⁷ G Cap Analog	5μΙ
DNA template, linearized (in water or	
TE buffer at 1μg/μl)	5μΙ
Phage RNA polymerase	<u>40 units</u>
Nuclease-Free Water to final volume of	50ul

Incubate for 1 hour at 37°C. To increase the yield of RNA, add an additional 40 units of phage RNA polymerase and incubate for 1 hour.

II. Composition of Buffers and Solutions

rNTP mix

Transcription Optimized 5X Buffer (provided)

 2.5mM
 rATP
 200mM
 Tris-HCI (pH 7.9 at 25°C)

 2.5mM
 rGTP
 50mM
 NaCI

 2.5mM
 rUTP
 30mM
 MgCl₂

 2.5mM
 rCTP
 10mM
 spermidine

 in Nuclease-Free Water

rNTP capping mix

5mM rATP 5mM rUTP 5mM rCTP 0.5mM rGTP in Nuclease-Free Water

III. Related Products

A. Related Systems

Product	Cat.#
Riboprobe® System—SP6	P1420
Riboprobe® System—T3*	P1430
Riboprobe® System—T7*	P1440
Riboprobe® System Buffers*	P1121
RiboMAX™ Large Scale RNA Production System—SP6*	P1280
RiboMAX™ Large Scale RNA Production System—T7*	P1300
TNT® T7 Quick Coupled Transcription/Translation System	L1170
TNT® T7 Quick Coupled Transcription/Translation System, Trial Size*	L1171
TNT® SP6 Quick Coupled Transcription/Translation System	L2080
TNT® SP6 Quick Coupled Transcription/Translation System, Trial size	L2081
TNT® SP6 Coupled Reticulocyte Translation System	L4600
TNT® T3 Coupled Reticulocyte Translation System	L4950
TNT® T7 Coupled Reticulocyte Translation System	L4610
TNT® T7/SP6 Coupled Reticulocyte Translation System	L5020
TNT® T7/T3 Coupled Reticulocyte Translation System	L5010
TNT® SP6 Coupled Reticulocyte Translation System, Trial Size	L4601
TNT® T7 Coupled Reticulocyte Translation System, Trial Size	L4611

^{*}For Laboratory Use.

B. Related Products

Product	Size	Cat.#
SP6 Promoter Primer	2μg	Q5011
pGEM® Express Positive Control Template	10μg (2 x 5μg)	P2561
rATP, 100mM*	400µl	E6011
rUTP, 100mM*	400µl	E6021
rGTP, 100mM*	400µl	E6031
rCTP, 100mM*	400µl	E6041
rATP, rCTP, rGTP and rUTP, each at 100mM*	400µl each	E6000
Nuclease-Free Water*	50ml (2 x 25ml)	P1193
Ribo m ⁷ G Cap Analog	10 A ₂₅₄ units	P1711
	25 A ₂₅₄ units	P1712

*For Laboratory Use.

Product	Concentration	Size	Cat.#
Recombinant RNasin®	20–40u/μl	2,500u	N2511
Ribonuclease Inhibitor	20–40u/μl	10,000u	N2515

For Laboratory Use.