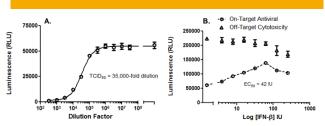

# Viral ToxGlo™: A New Assay for Monitoring Viral-Induced Cytopathic Effect

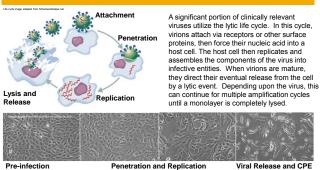
James W. Noah<sup>\*</sup>, Lynn Rasmussen<sup>\*</sup>, Andrew Niles<sup>#</sup>, and Dan Lazar<sup>#</sup> <sup>\*</sup>Southern Research Institute, 2000 9<sup>th</sup> Avenue S., Birmingham, AL 35205 <sup>#</sup>Promega, 2800 Woods Hollow Road, Madison, WI 53711

# 1. Abstract

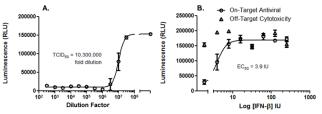

Viral agents are responsible for periodic epidemics (or pandemics) that result in significant morbidity and mortality often causing colossal economic impact. Although viral outbreaks can be limited/controlled by vaccination, education efforts and hygiene, there remains a need for ancillary treatment modalities. The current armamentarium of antiviral drugs is typically efficacious, but practically prone to diminished utility due to widespread use leading to viral recombination and resistance. Therefore, new methods of drug discovery are sought to identify novel antiviral compounds from previously unmined libraries. Because many medically important viruses utilize the lytic life cycle, drug discovery assays that measure host cell health can inversely report viral activity. For instance, the tetrazolium family of compounds (WST-1, XTT, MTT, and MTS) have been used to define viral infectivity by measuring changes in monolayer integrity. However, these assays are poorly suited for high throughput screening (HTS) due to poor sensitivity and/or multiple assay steps. We have developed a bioluminescent assay which measures cellular ATP. Because ATP is tightly regulated in cells, it serves as an excellent surrogate for host cell viability. Here we use four clinically significant viruses and four host cell lines to show that Viral ToxGlo™\* can be utilized for determining the relative viral-burden in a sample for screening and characterizing antiviral compound potency during drug discovery.

#### 4. Influenza H1N1

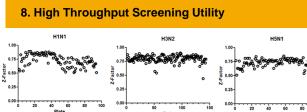



Influenza A virus (subtype H1N1) is spread by direct contact and caused the 2009 "swine flu" pandemic that claimed 17,000 lives. Vaccination can be ineffective due to near constant genomic reassortment. H1N1 produces rapid CPE in culture (72hr). **Panel A.** Influenza H1N1 was diluted in half-log dilutions and applied to MDCK cells. **Panel B.** Ribavirin was subjected to halflog dilutions and added to either MDCK cells with 100 TCID<sub>50%</sub> of H1N1 (On-Target) or MDCK cells only (Off-Target).

### 7. Respiratory Syncytial Virus (RSV)

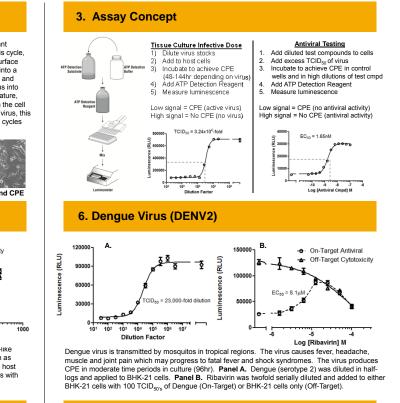



RSV is transmitted by direct contact and causes significant disease in the lower respiratory tract of infants and the immunocompromised. The disease is typically indistinguishable from the common cold but may progress to bronchitis or pneumonia. RSV causes relatively slow CPE (144hr) in culture. **Panel A.** RSV (strain A2) was diluted in half-log dilutions and applied to A549 cells. **Panel B.** Interferon-β was twofold serially diluted and added to either A549 cells with 100 TCID<sub>sro</sub> of RSV (On-Target) or A549 cells only (Off-Target).


# 2. Cytopathic Effect



# 5. Venezuelan Equine Encephalitis Virus (VEEV)




VEEV is a mosquito-borne viral pathogen that can attect neality humans and cause tlu-like symptoms and death. When propagated in cell culture, the virus produces rapid CPE in as short as 72hr. Panel A. VEEV (strain TC83) was diluted in half-log dilutions on VeroE6 host cells. Panel B. Interferon-B was twofold serially diluted and added to either VeroE6 cells with 100 TCID----- of VEEV (On-Tarcet) or VeroE6 cells only (Off-Tarcet).



30,000 compounds from the Enamine chemical diversity library were screened as single doses in 384-well format for antiviral activity against three Influenza A strains. The experiment was concluded after 72hr of viral exposure. At that point, Viral ToxGlo ™ was added and luminescence measured. Z-factor analysis (a statistical measure of signal window and variation) was conducted on each plate by comparing infected and uninfected control wells. Average Z-factors were 0.73, 0.8 and 0.73 for H1N1, H3N2, and H5N1, respectively. Z-factor values above 0.5 are considered to be sufficiently robust and reproducible for HTS studies. 320 compounds demonstrated 50% or more viral inhibiton.

#### www.promega.com



#### 9. Summary

- Viral ToxGlo<sup>™</sup> is an "add-mix-measure" reagent useful for measuring cytopathic effect in host cells caused by lytic virions
- Viral ToxGlo™ is useful for establishing tissue culture infective dose (TCID<sub>50</sub>) and for examining antiviral activities and potency of potential antiviral compounds as well as off-target toxicity
- Viral ToxGlo™ performance was tested using four clinically significant viral pathogens propagated on four distinct host cell lines: Influenza A with MDCK Venezuelan Equine Encebalitis Virus with VeroE6

Dengue virus with BHK-21 Respiratory Syncytial Virus with A549

 Viral ToxGlo<sup>™</sup> was successfully employed in a single concentration screen of 30,000 compounds against three strains of Influenza A virus and produced robust Z-factors

Questions? andrew.niles@promega.com

