CHARACTERIZATION, VALIDATION AND POPULATION STUDIES OF POWERPLEX[™] 2.1, A NINE-LOCUS SHORT TANDEM REPEAT (STR) MULTIPLEX SYSTEM, AND THE PENTA D MONOMER

<u>Eleni N. Levedakou</u>,¹ David A. Freeman,¹ Michael J. Budzynski,¹ Buddy E. Early¹, Mark S. Nelson¹, Felipe Konotop², Tara Hockenberry², Cecelia A. Crouse², Kevin McElfresh⁴, Jim Schumm⁴, Amy-Jo Townley⁵, Anne Pollerd⁵, Jennifer Lewis⁵, Jennifer Gombos⁵, Jeff R. Ban⁵, Frank Kist⁶, Mary Hockensmith⁶, Michelle Terwillinger⁶, and Christine S. Tomsey⁶

¹North Carolina State Bureau of Investigation, Raleigh, NC

²Palm Beach County Sheriff's Office, West Palm Beach, FL

³Promega Corporation, Madison, WI

⁴Bode Technology Group, Springfield, VA

⁵Virginia Division of Forensic Science, Richmond, VA

⁶Pennsylvania State Police, Greensburg, PA

⁷NCSBI has provided all the Penta D data.

In order to increase the power of discrimination for human identification purposes, a nine-locus short tandem repeat (STR) multiplex, the PowerPlexTM 2.1 System (PowerPlexTM 2.1) has been developed by Promega Corporation. This megaplex system includes the highly polymorphic loci FGA, TPOX, D8S1179, vWA, Penta E, D18S51, D21S11, TH01, and D3S1358 and may be used in combination with the eight-locus STR multiplex, the PowerPlexTM1.1 system (PowerPlexTM1.1) which has been previously developed. Three of the loci, TPOX, TH01, and vWA, have been included in both systems for quality control purposes. As with PowerPlexTM 1.1, PowerPlexTM 2.1 is also based on a two-color detection of fluorescent-labeled DNA products amplified by polymerase chain reaction (PCR) and provides a valuable tool for accurate and rapid allele determination. An additional pentanucleotide locus, Penta D, was also tested since it will be part of a new megaplex, PowerPlexTM 16, that will include all loci found in PowerPlexTM 1.1 and PowerPlexTM 2.1 systems. The primer sequences used in the PowerPlexTM 2.1/Penta D system are also presented. To meet the Quality Assurance Standards for Forensic DNA Testing Laboratories, we tested the efficiency and reproducibility of the PowerPlexTM 2.1/Penta D system by several validation studies which were conducted as a joint project among five laboratories 1-6. Validation tests included concordance studies, sensitivity and species specificity determination, as well as performance on forensic and environmentally impacted samples. The results produced from these tests demonstrated the consistency and reliability of the PowerPlexTM 2.1/Penta D⁷ system. Statistical data obtained from population databases involving major ethnic groups determined independence of loci inheritance and provide several statistical values used for forensic, paternity and other human identification purposes.